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This document includes a list of computational problems that have been
studied within the framework of parameterized complexity [81]. It is mainly
based on “A Compendium of Parameterized Complexity Results”, version 2.0
(May 22, 1996), by Michael T. Hallett and H. Todd Wareham, and on
Downey and Fellows’ book [81]. It includes, however, several new results
that have been published in the last few years.

Every computational problem in this document has one or more param-
eterized versions. Currently there are 312 computational problems listed in
alphabetical order. For each of them we report the known parameterized
versions (for a grand total of 376), the corresponding parameterized com-
plexity results, and the references to the relevant articles in the bibliography.

This document does not pretend, of course, to be complete; for instance,
it does not consider computational problems that are not decision prob-
lems. Moreover, this document likely includes errors and omissions. If you
have corrections, suggestions, new or missing results, please send them to
compendium@sprg.uniroma2.it.
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List of problems

Annotated Face Cover

Instance: A plane graph G = (V,E) (that is, an embedding of a planar
graph on the plane) with face set F ; a function µV : V → {active, marked};
a function µF : F → {active, marked}; a positive integer k.

Question: Is there a set C ⊆ {f ∈ F |µF (f) = active} with |C| ≤ k and
such that for each v ∈ {u ∈ V |µV (u) = active}, there is a face in C whose
boundary includes v?

Parameter: k

FPT (O∗(4.6056k
)

algorithm in [4, 118])

Note: See also Face Cover.

Arc Preserving Longest Common Subsequence

Instance: An alphabet Σ; sequences A, B over Σ such that |A| = n, |B| = m;
arc sets PA ⊂ n× n, PB ⊂ m×m; a positive integer k.

Question: Is there an arc-preserving subsequence S of A and B of length
at least k? A subsequence is considered arc-preserving if whenever both
endpoints of an arc from either A or B are found in S, the corresponding
symbols are joined by an arc in the other sequence.

Parameter: k

W[1]-complete (hardness: reduction from Clique [99])

Note: The general problem is NP-complete by the reduction from Clique
in [99]. The problem remains hard for both W[1] and NP even when arcs
do not share endpoints.

Backward Paired Comparison

Instance: A digraph D = (V,A); a weight function ε : V → Q such that the
weights are proportional to 1/q, where q is a positive integer, and moreover:
(i) ∀xy ∈ A, 0 < ε(xy) ≤ 1, (ii) ∀xy, yx ∈ A, ε(xy) + ε(yx) = 1, and (iii)
∀xy ∈ A such that yx 6∈ A, ε(xy) = 1; a nonnegative integer k.

Question: Does D have an ordering of backward length at most k? An
ordering of D is a bijection α : V → {1, . . . , |V |}. An arc xy ∈ A is backward
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if α(x) > α(y). The length of an arc xy ∈ A is ε(xy) · |α(x)− α(y)|. The
backward length of α is the sum of the lengths of all backward arcs.

Parameter: k

Open (reported in [141])

Parameter: k, q

FPT (proved in [141])

Parameter: cd(D)

FPT (proved in [141]; cd(D) represents the completion number
of D)

Note: A weighted digraph satisfying the conditions shown above is said a
PCD (Paired Comparison Digraph). The completion number of D is the
minimal number of arcs that we have to add to D in order to obtain a
semicomplete multipartite PCD. A digraph is semicomplete multipartite if
it is obtained from a complete multipartite graph by replacing every edge
(u, v) with the arc uv or the arc vu or both the arcs uv and vu.

α-Balanced Separator

Instance: A graph G = (V,E); a positive integer k.

Question: Does there exist a set of vertices S ⊆ V of cardinality at most k
such that every connected component of G[V \S] has at most α |V | vertices?
(α ∈ (0, 1) is a fixed constant)

Parameter: k

W[1]-hard, in W[P] (membership: reduction to Bounded Non-
determinism Turing Machine Computation [53]; hardness:
reduction from Clique [35])

Bandwidth

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a 1:1 linear layout f : V → {1, . . . , |V |} such that (u, v) ∈
E implies |f(u)− f(v)| ≤ k?

Parameter: k

W[t]-hard for all t (reduction from Uniform Emulation On
A Path [28]; the problem remains W[t]-hard for all t when the
given graph is directed and the layout must respect arc direction,
or when the given graph is a tree [33])
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Note: See also related problems Cutwidth, Linear Arrangement, and
Linear Arrangement Generalized To A Vector p-Norm.

k-Based Tiling

Instance: A tiling systems with distinguished tiles; a positive integer k.

Question: Is there a tiling of the n × n plane using the tiling system and
starting with exactly k distinguished tiles in a line?

Parameter: k

W[P]-complete (reduction to generic simulation of Turing ma-
chine [81, Exercise 13.0.4])

Binary Cladistic Character Compatibility

Instance: A set C of n binary cladistic characters over m objects; a positive
integer k.

Question: Is there a subset C ′ ⊆ C, |C ′| = k, such that all pairs of characters
in C ′ are compatible?

Parameter: k

W[1]-complete (hardness: reduction from Clique [66, 210])

Note: The general problem is NP-complete by the reduction from Clique
in [66]. The unconstrained-character version of this problem is also W[1]-
complete [210]. If k = |C|, one obtains the Perfect Phylogeny problem.

Binary Qualitative Character Compatibility

Instance: A set C of n binary qualitative characters over m objects; a posi-
tive integer k.

Question: Is there a subset C ′ ⊆ C, |C ′| = k, such that all pairs of charac-
ters in C ′ are compatible?

Parameter: k

W[1]-complete (hardness: reduction from Binary Cladistic
Character Compatibility [66, 210])

Note: The general problem is NP-complete by the reduction from Binary
Cladistic Character Compatibility in [66]. The unconstrained-char-
acter version of this problem is W[1]-hard [210].
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Bipartite Colorful Neighborhood

Instance: A bipartite graph G = (V0, V1, E); a positive integer k.

Question: Is there a two-coloring of V1 such that there exists a set S ⊆ V0

with |S| ≥ k such that each element of S has a colorful neighborhood, that
is, each element of S has at least one neighbor of each color?

Parameter: k

FPT (O∗(2.6494k
)

algorithm using crown decomposition [163,
164])

Note: Equivalent to Set Splitting [163].

Bipartite Graph Embedding

Instance: A bipartite graph G; a bipartite graph H.

Question: Can H be embedded into G?

Parameter: H

W[1]-complete (membership: direct proof [81, Exercise 10.0.3];
hardness: reduction from Clique [38, 184], also in [81, Exer-
cise 10.0.3])

Bipartite Matching Cardinality

Instance: A bipartite graph B = (U, V,E); a positive integer k.

Question: Does G have at least k matchings?

Parameter: k

FPT (an algorithm is shown in [151])

Note: Equivalent to Permanent Lower Bound.

Bipartization By Edge Removal

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a set C ⊆ E with |C| ≤ k whose removal produces a
bipartite graph?

Parameter: k

FPT (by a parameterized reduction to Bipartization By Ver-
tex Removal, which yields a O∗(3k

)
algorithm [213]; also [190])
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Note: The parametric dual is Maximum Cut.

Bipartization By Edge Replacing With Length-2 Paths

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a set C ⊆ E with |C| ≤ k such that replacing each edge
in C by a path of length two produces a bipartite graph?

Parameter: k

FPT (equivalent to Bipartization By Edge Removal [118])

Bipartization By Vertex Removal

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a bipartization set C ⊆ V with |C| ≤ k whose removal
produces a bipartite graph?

Parameter: k

FPT (by a O
(
3k |V | |E|

)
algorithm in [190])

Bipartization Improvement

Instance: A graph G = (V,E); a bipartization set C ⊆ V .

Question: Is there a bipartization set C ′ ⊆ V with |C ′| < |C|? A bipartiza-
tion set is a subset of vertices whose removal produces a bipartite graph.

Parameter: |C|

FPT (by a O
(
3k |V | |E|

)
algorithm in [190])

Bounded Degree Red-Blue Nonblocker

Instance: A graph G = (V,E) of maximum degree d (d ≥ 2 is a fixed
constant); a coloring of the vertices c : V → {red, blue}; a positive integer k.

Question: Is there a set of red vertices V ′ of cardinality k such that every
blue vertex has at least one neighbor that does not belong to V ′?

Parameter: k

W[1]-complete (direct proof for both membership and hardness
[78, 81])
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Bounded DFA Intersection

Instance: An input alphabet Σ; a set of k deterministic finite-state automata
A1, . . . , Ak on the common input alphabet Σ; a positive integer m (let also
define q = max {|Qi| : 1 ≤ i ≤ k}, where Qi (1 ≤ i ≤ k) is the state set of
the automaton Ai).

Question: Is there a string X ∈ Σm that is accepted by each Ai, i = 1, . . . , k?

Parameter: k

W[t]-hard for all t (reduction from Longest Common
Subsequence parameterized by k [212]; it remains W[t]-hard
for all t when the alphabet size |Σ| is equal to 2 [212])

Parameter: m, q

W[2]-hard, in W[P] (membership: reduction to Bounded Non-
determinism Turing Machine Computation [53], hardness:
reduction from Dominating Set [212]; still in W[2] if q is not a
parameter [53])

Parameter: q

W[2]-hard (reduction from Dominating Set [212])

Parameter: k, m

W[1]-complete (membership: reduction to Short Nondeter-
ministic Turing Machine Computation [53]; hardness: re-
duction from Longest Common Subsequence parameterized
by k and m [212])

Parameter: m, |Σ|
FPT (From the O(mk |Σ|m) trivial algorithm that checks all |Σ|m
possible strings [212])

Parameter: k, m, q

FPT (From a O
(
m |Σ|2 qk+1

)
algorithm that constructs the

intersection DFA of all automata and then applies depth-first
search to its transition diagram [212])

Parameter: k, q

Open (Reported in [212]; still open even when |Σ| is also a pa-
rameter)

Parameter: q, |Σ|
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Open (Reported in [212]; notice that a restricted version of the
problem where m ≤ q is also in FPT when parameterized by q

and |Σ| from a O
(
mk2 |Σ|2 q(q2q|Σ|)+1

)
algorithm in [212], but in

the general case a running time linear in m is not polynomial in
the size of the instance)

Note: The unparameterized version of this problem where the string is in
Σ∗ is PSPACE-complete by a reduction from Linear Space Acceptance;
the unparameterized version of this problem where the string is in Σm is
NP-hard. The problem parameterized by |Σ| is not in XP unless P = NP
[212].

Bounded Factor Factorization

Instance: An n-bit positive integer N ; a positive integer k.

Question: Is there a prime factor p of N such that p < nk?

Parameter: k

randomized FPT ([108, 109])

Bounded Hamming Weight Discrete Logarithm

Instance: An n-bit prime p; a generator g of F ∗
p ; an element a ∈ F ∗

p ; a
positive integer k.

Question: Is there a positive integer x whose binary representation has at
most k 1’s (that is, has a Hamming weight of no more than k) such that
a = gx?

Parameter: k

Open (reported in [81])

Bounded Nondeterminism Turing Machine Computation

Instance: A single-tape, single-head nondeterministic Turing machine T =
(Σ, Q, ∆); an input word x ∈ Σ∗; positive integers k and m (m encoded in
unary).

Question: Does there exist an accepting computation path of T (x) having
at most m steps and at most k nondeterministic steps?

Parameter: k
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W[P]-complete (membership: direct proof [53]; hardness: reduc-
tion from Chain Reaction Closure [53])

Note: This problem reduces to Short Nondeterministic Turing Ma-
chine Computation when both m and k are parameters.

Bounded Weight t-Normalized Satisfiability

Instance: A t-normalized boolean expression X (t ≥ 2); a positive integer k.

Question: Does X have a satisfying truth assignment of weight no more
than k?

Parameter: k

W[t]-complete (direct proofs [44, 43, 45, 46]; W[t]-completeness
also follows by the main lemma of Downey and Fellows [77]; in
FPT for t = 1)

Note: A boolean expression is t-normalized if it is of the form product-of-
sums-of-products . . . of literals with t alternations.

Call Control in Tree Networks

Instance: A tree T = (V,E); a capacity function c : E → N; a subset
R = {(x1, y1), . . . , (xn, yn)} ⊆ V ×V of connection requests; an integer k ≥ 0.

Question: Is there a subset A ⊆ R such that |R \A| ≤ k and no edge e ∈ E
is contained in more than c(e) paths of P , where P is the set of paths of T
that connect the pairs in A?

Parameter: k

FPT (from a O∗(2k k!
)

algorithm [197]; still in FPT with a
O∗(k!) algorithm for the directed graph obtained from a tree by
replacing each edge with two directed arcs of opposite directions
[197])

Note: See also Call Control in Trees of Rings and Call Control in
General Networks. If all edges have capacity equal to one, the problem
is in P [176]. If all edges have capacity equal to one or two, there is a O∗(3`

)
algorithm, where ` is the number of edges of capacity equal to two [118].

Call Control in Trees of Rings

Instance: A tree of rings T = (V,E); a set R = {(x1, y1), . . . , (xn, yn)} ⊆
V × V of connection requests; an integer k ≥ 0.
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Question: Is there a set A ⊆ R such that |R \A| ≤ k and there is a set of
edge-disjoint paths in T that connect all pairs of A?

Parameter: k

FPT (from a O∗(2.311k
)

algorithm based on a reduction to Hit-
ting Set For Size d Sets with d = 3 [197], then improved to
a O∗(2.1788k

)
algorithm in [118]; still in FPT with a O∗(5k

)
algorithm for the directed graph obtained from a tree of rings by
replacing each edge with two directed arcs of opposite directions
[197])

Note: See also Call Control in General Networks and Call Con-
trol in Tree Networks. The classical, optimization version of Call
Control in Trees of Rings is NP-hard [98].

Call Control in General Networks

Instance: A graph G = (V,E); a capacity function c : E → N (let C =
max {c(e) : e ∈ E}); a subset R = {(x1, y1), . . . , (xn, yn)} ⊆ V × V of con-
nection requests; a set P = {pi : pi is a path of G that connects xi and yi,
for every (xi, yi) ∈ R}; a positive integer k.

Question: Is there a subset A ⊆ R such that |R \A| ≤ k and no edge e ∈ E
is contained in more than c(e) paths of P?

Parameter: k

W[2]-hard, in W[P] (membership: reported in [197]; hardness:
reduction from Hitting Set [197]; still W[2]-hard when re-
stricted to series-parallel graphs [197])

Parameter: k, C

FPT (from a O
(
(C + 1)k |V |

)
algorithm in [197]; H. Fernau

shows in [118] that this problem can be solved within the same
time bounds as Hitting Set For Size d Sets with d = C)

Note: See also Call Control in Tree Networks and Call Control
in Trees of Rings. The Call Control problem without predetermined
paths is NP-hard even for k = 0 on series-parallel graphs [176].

Cat And Mouse

Instance: A Cat and Mouse game G = (X, E, c,M, v); a positive integer k.

Question: If |M | = k, does Player I have a winning strategy?
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Parameter: k

XP-complete (membership: direct proof [81]; hardness: reduc-
tion from Pebble Game [5, 6])

Note: The Cat and Mouse Game is a quintuple G = (X, E, c,M, v) with X
a set of vertices, E a set of edges, c ∈ X, M ⊆ X, and v ∈ X. In the game,
Player I begins with his token on c and Player II begins with tokens on each
member of M . Players play alternatively and can move tokens from vertex x
to vertex y provided xy ∈ E. Two tokens of Player II cannot occupy the
same vertex. Player I wins if he can place his token on a vertex with one
of Player II’s tokens. Player II wins if she can place one of her tokens on
vertex v even if it is occupied by Player I’s token. Player I plays first.

Chain Minor Ordering

Instance: Two finite posets P and Q.

Question: Is P a chain minor of Q?

Parameter: P

Open (reported in [81])

Chain Reaction Closure

Instance: A directed graph D = (V,A); a positive integer k.

Question: Does there exist a set V ′ of k vertices of D whose chain reaction
closure is D? A chain reaction closure of V ′ is the smallest superset S of V ′

such that if u, u′ ∈ S and arcs (u, x), (u′, x) ∈ A, then x ∈ S.

Parameter: k

W[P]-complete (hardness: reduction from Weighted Mono-
tone Circuit Satisfiability [2])

Clique

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a set V ′ ⊆ V of cardinality k such that ∀u, v ∈ V ′,
(u, v) ∈ E?

Parameter: k

W[1]-complete (equivalent to Independent Set [78])
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Note: See also Planar Clique.

Clique Complement Cover

Instance: A graph G = (V,E); a positive integer k.

Question: Does there exist a clique complement cover C ⊆ V with |C| ≤ k?
A subset of vertices C is a clique complement cover if and only if V − C
induces a complete subgraph.

Parameter: k

FPT (O∗(1.6182k
)

algorithm in [118])

Note: This problem is strongly related to Vertex Cover, because C is
a clique complement cover of G if and only if C is a vertex cover in the
complement graph of G [118].

Clique For Almost Cluster Graphs

Instance: A graph G = (V,E) that is a cluster graph with k edges added;
positive integers k and s.

Question: Is there a clique of size s in G?

Parameter: k

FPT (O
(

1.53k + |V |3
)

algorithm in [137])

Note: Strongly related to Cluster Deletion.

Cluster Deletion

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a edge set C ⊆ E with |C| ≤ k whose removal produces
a graph that consists of a disjoint union of cliques?

Parameter: k

FPT (O
(

1.53k + |V |3
)

search tree algorithm [132, 133]; mem-
bership in FPT was established in [42])

Note: There exists some constant ε such that it is NP-hard to approximate
this problem to within a factor of 1 + ε [199]; see also Cluster Editing
and Cluster Vertex Deletion.
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Cluster Editing

Instance: A graph G = (V,E); a positive integer k.

Question: Can we transform G, by deleting and adding at most k edges,
into a graph that consists of a disjoint union of cliques?

Parameter: k

FPT (O
(

2.27k + |V |3
)

search tree algorithm [132, 133])

Note: The best known approximation factor for this problem is 4; the prob-
lem is APX-hard [56]; see also Cluster Deletion.

Cluster Vertex Deletion

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a vertex set C ⊆ V with |C| ≤ k whose removal produces
a graph that consists of a union of vertex-induced cliques?

Parameter: k

FPT (O
(

2.1788k + |V |3
)

[118])

Note: See also Cluster Deletion.

3-CNF Satisfiability

Instance: A Boolean formula F in conjunctive normal form (CNF) with
variables in X and each clause of at most three literals.

Question: Is there a satisfying assignment α : X → {true, false} for F?
(Let k be the number of clauses of size exactly three.)

Parameter: k

FPT (O∗(1.6182k
)

search tree algorithm in [118])

Parameter: |X|

FPT (O
(
1.5045|X|) algorithm in [157], based on a previous

O
(
1.619|X|) algorithm in [169])

Parameter: d|X| / log(|F |)e

M[1]-complete ([103, 104, 73])
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CNF Satisfiability With Bounded Deficiency

Instance: A Boolean formula F in conjunctive normal form (CNF) with n
variables and m clauses (in the following, dF denotes the maximum defi-
ciency of F ).

Question: Is there a satisfying truth assignment for F?

Parameter: dF

FPT (O
(
2dF n3

)
algorithm in [204]; the maximum deficiency of a

formula is related to graph parameters, like treewidth, of graphs
related to the formula, as discussed in [205, 204])

Note: The deficiency of a propositional formula in CNF with n variables and
m clauses is equal to m− n; the maximum deficiency of F is the maximum
deficiency over all subsets of F .

Cograph Vertex Deletion

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a vertex set C ⊆ V with |C| ≤ k whose removal produces
a cograph?

Parameter: k

FPT (O
(

3.1150k + |V |3
)

algorithm in [133, 118])

Note: A cograph is (1) a graph having only one vertex, or (2) the union of
two cographs, or (3) the complement of a cograph. A graph is a cograph if
and only if it does not contain any set of four vertices that induce a path.

Colored Cutwidth

Instance: A graph G = (V,E); an edge-coloring c : E → {1, . . . , r}; a posi-
tive integer k.

Question: Is there a 1:1 linear layout f : V → {1, . . . , |V |} such that
for each color j ∈ {1, . . . , k} and for each i, 1 ≤ i ≤ |V | − 1, we have
|{(u, v) ∈ E : c(u, v) = j ∧ f(u) ≤ i ∧ f(v) ≥ i + 1}| ≤ r?

Parameter: k
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W[t]-hard for all t (reduction from Longest Common
Subsequence parameterized by k [33, 34]; the directed ver-
sion of this problem where f(u) < f(v) if (u, v) ∈ E is also
hard for W[t], for all t [34]; the variant in which we refer to the
size of {(u, v) ∈ E : c(u, v) = j ∧ f(u) < i ∧ f(v) ≥ i + 1} is also
W[t]-hard, for all t [34])

2-Colored Directed Vertex Separation Number

Instance: Directed acyclic graph G = (V,E), coloring c : V → {1, 2}; posi-
tive integers k1 and k2.

Question: Is there a topological sort f of G such that for all i, 1 ≤ i ≤ n, we
have that width1,f (i) ≤ k1 and width2,f (i) ≤ k2? For ζ ∈ {1, 2}, widthζ,f (i)
is the number of vertices v such that c(v) = ζ, f(v) ≤ i and such that there
is an arc (v, v′) ∈ E with i ≤ f(v′).

Parameter: k1, k2

W[t]-hard for all t (reduction from a directed variant of band-
width [22])

Colored Graph Automorphism

Instance: A {red, blue}-colored (bipartite) graph G = (V,E); a positive
integer k.

Question: Is there an automorphism preserving colors moving exactly k blue
vertices?

Parameter: k

W[1]-hard (reduction from Weighted Antimonotone q-CNF
Satisfiability with q = 2 [81, Exercise 9.0.2])

Colored Grid Homomorphism

Instance: A square grid graph H whose vertices are colored with c colors
(c ≥ 2 is a fixed constant); a colored graph G.

Question: Is there a homomorphism from H to G? A homomorphism is a
map f : V (H) → V (G) that is onto and that has the properties that (i)
whenever (x, y) ∈ E(H), then (h(x), h(y)) ∈ E(G), and (ii) if x and y have
the same color, then h(x) and h(y) have the same color.

Parameter: |H|
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W[1]-complete (membership is easy; hardness by reduction from
Clique [136])

Note: Related to Database Conjunctive Query Evaluation. Solvable
in polynomial time when c = 1.

Colored Proper Interval Graph Completion

Instance: A graph G = (V,E); a vertex coloring c : V → {1, . . . , k}; a posi-
tive integer k.

Question: Does there exist a proper interval supergraph of G which re-
spects c?

Parameter: k

W[1]-hard (reduction from Independent Set [154])

Note: This problem is equivalent to Colored Unit Interval Graph
Completion, as the class of unit interval graphs and proper interval graphs
are equivalent.

Compact Deterministic Turing Machine Computation

Instance: A multi-tape, multi-head deterministic Turing machine M having
t tapes and h heads per tape; a word x on the input alphabet Σ of M ; a
positive integer k.

Question: Does M on input x accept and visit at most k work tape squares?

Parameter: k

AW[SAT]-hard (reduction from Quantified Boolean For-
mula Satisfiability [50]; it remains AW[SAT]-hard when re-
stricted to single-head and single-tape Turing machines [50], and
also when restricted to single-head machines with empty input,
exactly one non-final internal state, and binary alphabet [50]; the
problem is not in XP (unless P = PSPACE) even for Turing ma-
chines having one head on each tape, empty input, one non-final
internal state and binary alphabet [50]; the problem is in XP
either when restricted to single-head machines with at most one
writable tape and empty input, or when the number of tapes is
parameter, or finally when the transition table is total, that is,
for any global configuration there exists an applicable transition
[50])
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Parameter: k, t, h, |Σ|

FPT (from a O
(
|Σ|(t+1)(5k+2h) k5h(t+1) |Q|7

)
algorithm (Q being

the state set of M) that builds a directed graph whose nodes
represent the global configurations of M [50])

Compact Nondeterministic Turing Machine Computation

Instance: A multi-tape, multi-head nondeterministic Turing machine M hav-
ing t tapes and h head per tape; a word x on the input alphabet Σ of M ; a
positive integer k.

Question: Is there an accepting computation of M on input x that visits at
most k work tape squares?

Parameter: k

AW[P]-hard (reduction from Quantified Circuit
Satisfiability [1, 2]; it remains AW[P]-hard when restricted
to single-head and single-tape Turing machines [1, 2], and also
when restricted to machines with empty input, one head per
tape, exactly one non-final internal state, and binary alphabet
[50]; the problem is not in XP (unless P = PSPACE) even for
Turing machines having empty input, one non-final internal
state and binary alphabet [50]; the problem is in XP either
when restricted to machines with at most one writable tape
and empty input, or when the number of tapes is parameter, or
finally when the transition table is total, that is, for any global
configuration there exists an applicable transition [50])

Parameter: k, t, h, Σ

FPT (from a O
(
|Σ|(t+1)(5k+2h) k5h(t+1) |Q|7

)
algorithm (Q being

the state set of M) that builds a directed graph whose nodes
represent the global configurations of M [50])

Connected Dominating Set

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a subset D ⊆ V with |D| ≤ k such that D is both a
connected set and a dominating set?

Parameter: k
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W[2]-hard (equivalent to Minimum Inner Node Spanning
Tree [118, 103])

Consecutive Block Minimization

Instance: An m× n binary matrix M ; a positive integer k.

Question: Is it possible to permute the columns of M to obtain a matrix M ′

that has at most k blocks of consecutive 1’s? (A block of consecutive 1’s is
an interval of a row such that all entries in that interval are 1’s.)

Parameter: k

FPT (by the reduction to problem kernel method [81, Exercise
3.2.6])

Constrained Minimum Vertex Cover in Bipartite Graphs

Instance: A bipartite graphs G = (V1, V2, E); integers k1, k2.

Question: Is there a minimum vertex cover of G with at most k1 vertices in
V1 and at most k2 vertices in V2?

Parameter: k1, k2

FPT (by a O
(

2k1+k2 + |E|
√
|V |

)
algorithm in

[145]; best current algorithm has time complexity in
O

(
1.26k1+k2 + (k1 + k2) |V |

)
, and it is based on the Dulmage-

Mendelsohn decomposition for bipartite graphs [60])

Note: The problem is related to Constraint Bipartite Vertex Cover.
It is NP-hard by a reduction from Clique [60].

Constraint Bipartite Dominating Set

Instance: A bipartite graph G = (V1, V2, E); positive integer k1, k2.

Question: Is there a dominating set D ⊆ V1 ∪ V2 with |D ∩ V1| ≤ k1 and
|D ∩ V2| ≤ k2?

Parameter: k1, k2

W[2]-hard (reduction from Red-Blue Dominating Set [118])

Constraint Bipartite Vertex Cover

Instance: A bipartite graph G = (V1, V2, E); positive integer k1, k2.
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Question: Is there a vertex cover C ⊆ V1 ∪ V2 with |C ∩ V1| ≤ k1 and
|C ∩ V2| ≤ k2?

Parameter: k1, k2

FPT (by a O
(
2k1+k2k1k2 + (k1 + k2) |G|

)
algorithm [165,

142]; the best current algorithm has time complexity in
O∗(1.3999k1+k2

)
[120])

Note: Equivalent to Spare Allocation [159], and related to Constrained
Minimum Vertex Cover in Bipartite Graphs. It is NP-hard by a re-
duction from Clique [159].

Crossing Number

Instance: A graph G = (V,E); a positive integer k.

Question: Does G have an embedding in the plane with crossing number no
more than k (that is, with at most k edges crossings)?

Parameter: k

Open (reported in [81])

Note: See also Crossing Number For Max Degree 3 Graphs. There
seem to be some intricate problems with the definition of crossing number,
see [177, 206, 118].

Crossing Number For Max Degree 3 Graphs

Instance: A graph G = (V,E) all of whose vertices have maximum degree 3;
a positive integer k.

Question: Does G have an embedding in the plane with crossing number no
more than k (that is, with at most k edges crossings)?

Parameter: k

FPT (O
(
|V |3

)
algorithm for fixed k by the Robertson-Seymour

Theorem [102, 192, 193] and also [81, page 444])

Note: See also Crossing Number.

Cutwidth

Instance: A graph G = (V,E); a positive integer k.
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Question: Is the cutwidth of G less than or equal to k? Or, equivalently,
is there a one-to-one mapping σ : V → {1, . . . , |V |} such that for every
1 ≤ i < |V |, |{(u, v) ∈ E : σ(u) ≤ i < σ(v)}| ≤ k?

Parameter: k

FPT (Fellows and Langston [111, 115]; solvable in O(f(k) · |V |)
[23])

Note: Given a layout σ : V → {1, . . . , |V |} and α ∈ R, the value of the cut
at α is the number of edges (u, v) ∈ E with σ(u) < α and σ(v) > α. The
cutwidth of a layout is the maximum of the value of the cut over all α. The
cutwidth of G is the minimum of the cutwidths of all possible layouts of G.

Database Conjunctive Query Evaluation

Instance: A database d = {D; R1, . . . , Rm} where D is a domain and each
Ri is a relation over D; a conjunctive query Q; a tuple t over D.

Question: Is t selected by the query Q over the database d?

Parameter: |Q|
W[1]-complete (membership: reduction to Weighted q-CNF
Satisfiability [180]; hardness: reduction from Clique [180].
Assuming FPT 6= W[1], the problem is in FPT if and only if
the instance is restricted to conjunctive queries with underlying
graphs of bounded tree-width; the underlying graph of a query
has a vertex for each variable and an edge between two vertices
if and only if there is an atom of the query including both corre-
sponding variables [136])

Parameter: number of variables in Q

W[1]-hard, in W[2] (membership: reduction to Weighted CNF
Satisfiability [180]; hardness: reduction from Clique [180].
The problem is W[1]-complete when the signature, i.e., the set
of relations and their arity, is fixed [180].)

Note: A query is a function that maps the database d to a relation (of
certain arity) over the same domain D; a conjunctive query corresponds
to relational algebra with selection, projection, join and renaming. See
also Database Datalog Query Evaluation, Database First-Order
Query Evaluation, and Database Positive Query Evaluation.
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Database Datalog Query Evaluation

Instance: A database d = {D; R1, . . . , Rm} where D is a domain and each
Ri is a relation over D; a Datalog query Q; a tuple t over D.

Question: Is t selected by the query Q over the database d?

Parameter: |Q|
W[P]-hard (reduction from Weighted Monotone Circuit
Satisfiability [180])

Parameter: number of variables in Q

W[P]-hard (reduction from Weighted Monotone Circuit
Satisfiability [180])

Note: A query is a function that maps the database d to a relation (of certain
arity) over the same domain D; a Datalog query corresponds to relational
algebra with selection, projection, join, renaming, union and recursion. See
also Database Conjunctive Query Evaluation, Database First-
Order Query Evaluation, Database Positive Query Evaluation.

Database First-Order Query Evaluation

Instance: A database d = {D; R1, . . . , Rm} where D is a domain and each
Ri is a relation over D; a first-order query Q; a tuple t over D.

Question: Is t selected by the query Q over the database d?

Parameter: |Q|
W[t]-hard for all t (reduction from Weighted t-Normalized
Satisfiability [180])

Parameter: number of variables in Q

W[P]-hard (reduction from Weighted Monotone Circuit
Satisfiability [180])

Note: A query is a function that maps the database d to a relation (of certain
arity) over the same domain D; a first-order query corresponds to relational
algebra with selection, projection, join, renaming, union and set difference.
See also Database Conjunctive Query Evaluation, Database Data-
log Query Evaluation, and Database Positive Query Evaluation.

Database Monotone Query Nonemptiness

Instance: A database d = {D; R1, . . . , Rm} where D is a domain and each
Ri is a relation over D; a query Q that has only existential quantifications
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and no negations.

Question: Is the relation of the query Q over the database d nonempty?

Parameter: |Q|

W[1]-complete ([88])

Note: A query is a function that maps the database d to a relation (of certain
arity) over the same domain D.

Database Positive Query Evaluation

Instance: A database d = {D; R1, . . . , Rm} where D is a domain and each
Ri is a relation over D; a positive query Q; a tuple t over D.

Question: Is t selected by the query Q over the database d?

Parameter: |Q|
W[1]-complete (membership: reduction to Database Con-
junctive Query Evaluation [180]; hardness: reduction from
Clique [180].)

Parameter: number of variables in Q

W[SAT]-hard (reduction from Weighted Formula
Satisfiability [180])

Note: A query is a function that maps the database d to a relation (of
certain arity) over the same domain D; a positive query corresponds to
relational algebra with selection, projection, join, renaming and union. See
also Database Conjunctive Query Evaluation, Database Datalog
Query Evaluation, and Database First-Order Query Evaluation.

Database Query Nonemptiness

Instance: A database d = {D; R1, . . . , Rm} where D is a domain and each
Ri is a relation over D; a query Q.

Question: Is the relation of the query Q over the database d nonempty?

Parameter: |Q|

AW[∗]-complete ([88])

Note: A query is a function that maps the database d to a relation (of certain
arity) over the same domain D.
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Degree Three Subgraph Annihilator

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a set of k vertices V ′ ⊆ V such that G − V ′ has no
subgraph of minimum degree 3?

Parameter: k

W[P]-complete (hardness: reduction from Weighted Mono-
tone Circuit Satisfiability [2])

Digraph Kernel

Instance: A digraph D = (V,A); a positive integer k.

Question: Does there exist a kernel in D of size at most k? A kernel is a
set of nodes S such that S is independent and for every vertex x ∈ V \ S,
there is y ∈ S such that xy ∈ A.

Parameter: k

W[2]-hard (reduction from Independent Dominating Set
[139])

Note: Not every digraph has a kernel. For instance, all odd length directed
cycles have no kernels. See also Planar Digraph Kernel.

Diameter Improvement For Planar Graphs

Instance: A planar graph G = (V,E); a positive integer k.

Question: Can G be augmented with additional edges in such a way that
the resulting graph G′ remains planar and the diameter of G′ is at most
k? (The diameter of a graph is the maximum distance between a pair of
vertices.)

Parameter: k

FPT (application of the Robertson-Seymour Theorem [79, 193];
solvable in O(|V |) time for fixed k [23])

Note: Is this problem the same as Planar Diameter Improvement in
[81]? The question is whether there is a planar graph G′ with G ⊆ G′ such
that the diameter of G′ is at most k. It is said to be in FPT by [70].

3-Dimensional Euclidean Generalized Mover

Instance: A set O of obstacle polyhedra; a set P of polyhedra that are freely
linked together at a set of linkage vertices V such that P has k degrees
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of freedom of movement; initial and final positions pI and pF of P in 3-
dimensional Euclidean space.

Question: Is there a legal movement of P from pI to pF ? That is, is there
a continuous sequence of translations and rotations of the polyhedra in P
such that at each point in time no polyhedron in P intersects any polyhe-
dron in O, and the polyhedra in P intersect themselves only at the linkage
vertices in V ?

Parameter: k

AW[SAT]-hard (reduction from Compact Deterministic
Turing Machine Computation [55])

Note: The general version of this problem is PSPACE-complete by a reduc-
tion from Linear Space Acceptance.

Directed Feedback Arc Set

Instance: A directed graph D = (V,A); a positive integer k.

Question: Is there a set I of k arcs such that each directed cycle of D contains
a member of I?

Parameter: k

Open (reported in [81]; it has the same parameterized com-
plexity of Directed Feedback Vertex Set [141]. In FPT
when restricted to multipartite tournaments (digraphs obtained
from multipartite graphs by adding an orientation to every edge)
[207, 141])

Directed Feedback Vertex Set

Instance: A directed graph D = (V,A); a positive integer k.

Question: Is there a set U of k nodes such that each directed cycle of D
contains a member of U?

Parameter: k

Open (reported in [81]. Solvable in time O
(

2k |V |2 (lg |V |+ k)
)

when restricted to tournaments, i.e., digraphs in which there is
exactly one arc between every pair of distinct nodes [72]. Also
in FPT when restricted to multipartite tournaments (digraphs
obtained from multipartite graphs by adding an orientation to
every edge) [188, 141])
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Note: See also Directed Feedback Arc Set.

Directed Linear Arrangement

Instance: A directed graph G = (V,A); a positive integer k.

Question: Is there a one-to-one mapping σ : V → {1, . . . , |V |} that respects
the orientation of G—that is, σ(u) < σ(v) whenever (u, v) ∈ A—such that∑

(u,v)∈A (σ(v)− σ(u)) ≤ k?

Parameter: k

FPT (O
(
2k |G|

)
algorithm in [118])

Parameter: k − |A|

FPT (O
(
2k |G|

)
algorithm in [118])

Note: See also Linear Arrangement.

Directed Max Leaf

Instance: A digraph D = (V,A); a nonnegative integer k.

Question: Does D contain a rooted tree with at least k leaves (nodes of
out-degree equal to zero)?

Parameter: k

Open (suggested by Mike Fellows and reported in [141])

Note: A rooted tree is a digraph H obtained from a undirected tree T and
from one of its vertices x ∈ V (T ) by orienting the edges of T in such a way
that every path from x to another vertex y in T is a directed path from x
to y in H.

Disjoint Paths

Instance: A graph G = (V,E); s1, . . . , sk start vertices; t1, . . . , tk end ver-
tices.

Question: Do there exist vertex disjoint paths P1, . . . , Pk such that Pi starts
at vertex si and ends at vertex ti for i = 1, . . . , k?

Parameter: k

FPT (Robertson and Seymour’s O
(
f(k) · n3

)
algorithm [192,

193])
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Note: For planar graph, this problem can be solved in time O(g(k) · n) [189].

Disjoint r-Subsets

Instance: A collection F of r subsets of a set X; a positive integer k.

Question: Are there k disjoint subsets in F?

Parameter: r, k

FPT (by the perfect hashing method [81, Exercise 8.3.1])

Dominating Clique

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a set of k vertices V ′ ⊆ V that forms a complete subgraph
of G and is also a dominating set of G?

Parameter: k

W[2]-complete (membership is trivial; hardness: reduction from
Dominating Set [36]; the problem is in FPT if V ′ is also re-
quired to be efficient, that is, each vertex not in V ′ is dominated
by exactly one vertex in V ′ [36])

Dominating Rearrangement

Instance: A graph G = (V,E); a subset S ⊆ V .

Question: Is there a dominating rearrangement r : S → N [S], with r(s) ∈
N [s] for each s ∈ S, such that r(S) is a dominating set for G?

Parameter: |S|
W[2]-complete (membership: reduction to Short Multi-Tape
Nondeterministic Turing Machine Computation [118];
hardness: reduction from Red-Blue Dominating Set [118])

Dominating Set

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a set of k vertices V ′ ⊆ V with the property that every
vertex of G either belongs to V ′ or has neighbor in V ′?

Parameter: k
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W[2]-complete (membership is trivial; hardness by a reduction
from Weighted CNF Satisfiability [75, 77, 81])

Parameter: treewidth of G

FPT (O
(
4tw(G) |V |

)
dynamic programming algorithm in [11, 9])

Note: The problem is W[2]-hard if the dominating set is required to be either
connected or total (for each vertex in V there is an edge to some vertex in V ′)
[36]. The problem is W[1]-hard if a general, connected, or total dominating
set is also required to be efficient (each vertex not in V ′ is dominated by
exactly one vertex in V ′) [36]. See also Planar Dominating Set.

Dominating Set On Bounded Genus Graphs

Instance: A graph G = (V,E) of bounded genus γ (γ constant); a positive
integer k.

Question: Is there a set of k vertices V ′ ⊆ V with the property that every
vertex of G either belongs to V ′ or has neighbor in V ′?

Parameter: k

FPT (O
(
(4γ + 40)kn2

)
search tree algorithm in [97])

Note: γ = 1 corresponds to Planar Dominating Set.

Dominating Set Of Queens

Instance: A n× n chessboard C; a positive integer k.

Question: Is it possible to place k queens on C such that all squares are
dominated?

Parameter: k

FPT (by reduction to problem kernel of size (2k + 1)2 cou-
pled with a dynamic programming algorithm based on bounded
treewidth, which yields a O

(
152k + n

)
algorithm [118])

Parameter: k − n/2

Open (reported in [118])

Dominating Threshold Set

Instance: A graph G = (V,E); positive integer k and r.
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Question: Is there a set of at most k vertices V ′ ⊆ V such that for every
vertex u ∈ V , N [u] contains at least r elements of V ′?

Parameter: k

W[2]-complete (membership: direct proof [80]; hardness: trivial
reduction from Dominating Set)

(k, l)-Dominator

Instance: A digraph D; positive integers k and l.

Question: Does D contain a (k, l)-dominator?

Parameter: k, l

Open (introduced in [158] and reported in [141])

Note: A digraph H = (V,A) is said a (k, l)-dominator if there exist partite
sets U and W such that |U | = k, |W | = l, and A = {uw : u ∈ U, w ∈ W}.

Domino Treewidth

Instance: A graph G = (V,E); a positive integer k.

Question: Is the domino treewidth of G at most k?

Parameter: k

W[t]-hard for all t (reduction from Longest Common
Subsequence parameterized by k [30])

Dual of Coloring

Instance: A graph G = (V,E); a positive integer k.

Question: Can G be properly colored by |V | − k colors?

Parameter: k

FPT (by the reduction to problem kernel method (Jan Telle) [81,
Exercise 3.2.7])

Dual of Irredundant Set

Instance: A graph G = (V,E); a positive integer k.

Question: Does G have an irredundat set of size |V | − k? (An irredundant
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set V ′ has the property that each vertex u ∈ V ′ has a private neighbor, i.e.,
a vertex u′ ∈ N [u] such that ∀ v ∈ V ′ \ {u}, u′ 6∈ N [v].)

Parameter: k

FPT (by the reduction to problem kernel method [81, Exercise
3.2.7])

Edge Average Min Linear Arrangement

Instance: A connected graph G = (V,E); a positive integer k.

Question: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such that∑
(u,v)∈E |σ(u)− σ(v)| ≤ k · |E|?

Parameter: k

para-NP-complete (the problem was introduced by Serna and
Thilikos [198]; it is NP-complete for any k ≥ 2 and is also
para-NP-complete [140])

Note: The complexity class para-NP includes all parameterized problems
with instances (I, k) that can be solved in time O(f(k) |I|c) by nondeter-
ministic Turing machines [122, 124]. See also Linear Arrangement and
Vertex Average Min Linear Arrangement.

Edge Dominating Set

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a subset D ⊆ E with |D| ≤ k such that for each e ∈ E,
either e ∈ D or there exists e′ ∈ D that is incident on e?

Parameter: k

FPT (O∗(2.6181k
)

algorithm in [118])

Note: See also Edge Dominating Set.

Edge-Induced Clique

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a subset of edges C ⊆ E with |C| ≥ k such that the
subgraph induced by E is a clique?

Parameter: k
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W[1]-complete (equivalent to Clique [149, 118])

Edge-Induced Clique Complement Cover

Instance: A graph G = (V,E); a positive integer k.

Question: Does there exist an edge-induced clique complement cover C ⊆ E
with |C| ≤ k? A subset of edges C is an edge-induced clique complement
cover if and only if E − C induces a complete subgraph.

Parameter: k

FPT ([118])

Exact Even Set

Instance: A red/blue graph G = (R,B, E); a positive integer k.

Question: Is there a set of k vertices R ⊆ R such that each member of B
has an even number of neighbours in R?

Parameter: k

W[1]-hard (reduction from Perfect Code [89])

Note: See also Even Set, Exact Odd Set, Odd Set.

Exact Odd Set

Instance: A red/blue graph G = (R,B, E); a positive integer k.

Question: Is there a set of k vertices R ⊆ R such that each member of B
has an odd number of neighbours in R?

Parameter: k

W[1]-hard (reduction from Perfect Code [89])

Note: See also Odd Set, Exact Even Set, Even Set.

Exact Cheap Tour

Instance: A graph G = (V,E); a weight function w : E → Z; positive
integers S and k.

Question: Is there a tour through at least k nodes of G of cost exactly S?
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Parameter: k

W[1]-hard (reduction from Subset Sum [78])

Note: See also Short Cheap Tour.

Exact Long Cycle

Instance: A graph G = (V,E); a positive integer k.

Question: Does G have a cycle of length exactly k?

Parameter: k

FPT (Downey and Fellows [81])

Note: See also Long Cycle, which requires a different proof technique.

Even Set

Instance: A red/blue graph G = (R,B, E); a positive integer k.

Question: Is there a set of at most k vertices R ⊆ R such that each member
of B has an even number of neighbours in R?

Parameter: k

Open (reported in [89])

Note: See also Exact Even Set, Exact Odd Set, Odd Set. Equivalent
to the Minimum Distance For Linear Codes problem.

Face Cover

Instance: A plane graph G = (V,E) (that is, an embedding of a planar
graph on the plane) with face set F ; a positive integer k.

Question: Is there a face cover set C ⊆ F with |C| ≤ k? A face cover set is
a set of faces whose boundaries contain all vertices of G.

Parameter: k

FPT (O∗(4.6056k
)

algorithm in [4, 118]; H. Fernau reports that
the base of the exponential can be improved to about 4.5 [118])

Note: Is this problem equivalent to Planar Embedding Face Cover?
Bienstock and Monma also considered a variant of this problem where some
preselected vertices need not to be covered [21]; the algorithms in [4, 118]
solve this variant too. See also Annotated Face Cover.
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Facility Location

Instance: A bipartite graph G = (F,C,E), consisting of a set F of potential
facility locations, a set C of customers, and an edge relation E, where (f, c) ∈
E indicates that c can be served by the facility at f ; weight functions wF :
F → N and wE : E → N; a positive integer k.

Question: Is there a set F ′ ⊆ F of facility locations and a set E′ ⊆ E of
ways to serve customers such that (1) E′ covers no vertex in F − F ′, (2) E′

covers all vertices in C, and (3)
∑

f∈F ′ wF (f) +
∑

e∈E′ wE(e) ≤ k?

Parameter: k

FPT (by reduction to a problem kernel of size ≤ k3k+1 discovered
by M. Fellows and H. Fernau, which yields a O

(
k3k+12k + nm

)
algorithm [118], or by a O

(
4knm

)
algorithm without kernerliza-

tion [118])

Note: An alternative formulation of this problem is as follows: given a matrix
M ∈ N(n+1)×m, indexed as M [0 . . . n][1 . . .m], and a positive integer k, is
there a set C ⊆ {1, . . . ,m} of columns and a function s : {1, . . . , n} → C

such that
∑

f∈C

(
M [0, f ] +

∑
c: s(c)=f M [c, f ]

)
≤ k? (Missing edges can be

represented by weights in the matrix larger than k.)

Feasible Register Assignment

Instance: A directed acyclic graph G = (V,E); a positive integer k; a register
assignment r : V → {R1, . . . , Rk}.

Question: Is there a linear ordering f of G, and a sequence S0, S1, . . . , S|V |
of subsets of V , such that S0 = ∅, S|V | contains all vertices of in-degree 0
in G, and for all i, 1 ≤ i ≤ |V |, f−1(i) ∈ Si, Si −

{
f−1(i)

}
⊆ Si−1, and Si−1

contains all vertices u for which (f−1(i), u) ∈ E, and for all j, 1 ≤ j ≤ k,
there is at most one vertex u ∈ Si with r(u) = Rj?

Parameter: k

W[t]-hard for all t (reduction from Longest Common
Subsequence parameterized by k [33])

Feature Set

Instance: A set of examples X =
{
x(1), . . . , x(m)

}
, where, for all 1 ≤ i ≤ m,

x(i) =
{

t(i), x
(i)
1 , . . . , x

(i)
n

}
∈ {0, 1}n+1; a positive integer k.
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Question: Does there exist a feature set S ⊆ {1, . . . , n} with |S| = k and
such that for all pairs of examples i 6= j, if t(i) 6= t(j) then there exists q ∈ S

such that x
(i)
q 6= x

(j)
q ?

Parameter: k

W[2]-complete (membership: direct proof [63]; hardness: reduc-
tion from Dominating Set [63])

Note: An example is composed of a binary value specifying the value of the
target feature and a vector of n binary values specifying the values of the
other features.

Feedback Vertex Set

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a set U of at most k vertices of G such that each cycle of
G passes through some vertex of U?

Parameter: k

FPT (Downey and Fellows [79]; also Bodlaender’s O(f(k) · n) al-
gorithm [24]; recently, a O∗(10.567k

)
algorithm has been devised

[69])

Note: See also Planar Feedback Vertex Set.

Fixed Alphabet Longest Common Subsequence

Instance: An alphabet Σ having fixed size; a set of k strings r1, . . . , rk over
the alphabet Σ; a positive integer λ.

Question: Is there a string s ∈ Σ∗ of length at least λ that is a subsequence
of each ri, for i = 1, . . . , k? (A string s is a subsequence of a string r if we
can delete some characters in r such that the remaining string is equal to s.)

Parameter: k

W[1]-hard (reduction from Partitioned Clique [182])

Parameter: k, λ

FPT (by the trivial algorithm that generates all |Σ|λ possible
subsequence strings and checks them against each ri)

Note: See also Longest Common Subsequence.
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Fixed Alphabet Shortest Common Supersequence

Instance: An alphabet Σ having fixed size; a set of strings {r1, . . . , rk} formed
over alphabet Σ; a positive integer λ.

Question: Does there exist a string s ∈ Σ∗ of length at most λ such that s is
a supersequence of each string ri, 1 ≤ i ≤ k? (A string s is a supersequence
of a string r if we can delete some characters in s such that the remaining
string is equal to r.)

Parameter: k

W[1]-hard (reduction from Partitioned Clique [182])

Parameter: λ

FPT (reported by [105])

Note: See also Shortest Common Supersequence.

Gate Matrix Layout

Instance: A boolean matrix M ; a positive integer k.

Question: Is there a permutation of the columns of M so that if in each row
we change to ∗ every 0 laying between the row’s leftmost and rightmost 1’s,
then no column contains more than k 1’s and ∗’s?

Parameter: k

FPT (Fellows and Langston [113]; also Bodlaender’s O(f(k) · n)
algorithm [23])

Note: Equivalent to Pathwidth.

Generalized Vertex Cover

Instance: A graph G = (V,E); a subset of vertices V ′ ⊆ V ; a positive integer
k.

Question: Is there a vertex cover C ⊆ V ′ with |C| ≤ k?

Parameter: k

FPT (equivalent to Vertex Cover [118])

Genus k-Cover

Instance: A graph G; a positive integer k.
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Question: Is there a finite graph H of genus at most k that is a cover of G?
H is a cover of G if there is a projection map p : V (H) → V (G) such that:
(1) p is onto, and (2) if p(u) = x and (x, y) ∈ E(G), then there is a unique
vertex v ∈ V (H) with (u, v) ∈ E(H) and p(v) = y.

Parameter: k

nonuniform FPT (solvable in time O
(
|V |3

)
by means of the

Robertson-Seymour Theorem [81, 193])

Graph Genus

Instance: A graph G = (V,E); a positive integer k.

Question: Does G have genus k?

Parameter: k

FPT (O
(
|V |3

)
algorithm for fixed k by the Robertson-Seymour

Theorem [112, 193]; solvable in time O(f(k) · |G|) [168])

Graph Linking Number

Instance: A graph G = (V,E); a positive integer k.

Question: Can G be embedded into the 3-dimensional space in such a way
that the maximum size of a collection of topologically linked disjoint cycles
is bounded by k?

Parameter: k

nonuniform FPT (Fellows and Langston’s O
(
|V |3

)
algorithm for

fixed k by the Robertson-Seymour Theorem [112, 193])

Graph Modification Problem

Instance: A graph G = (V,E); non-negative integers i, j, k.

Question: Can we delete at most i vertices, j edges, and add at most k edges
and get a Π graph? (Π is any nontrivial hereditary property characterized
by a finite set of forbidden induced subgraphs.)

Parameter: i, j, k

FPT ([42])
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Graph Packing

Instance: Graphs G and H; a positive integer k.

Question: Are there at least k vertex disjoint instances of H in G?

Parameter: k, |H|

FPT (2O(|H|k log k+k|H| log|H|) algorithm in [106])

Note: See also 3-Path Packing, s-Star Packing, and Triangle Packing.

Graph Pseudo Homomorphism

Instance: Graphs G = (V,E) and H = (U,A).

Question: Is there a pseudo-homomorphism from G to H? A pseudo-
homomorphism is a map f : V → U that is onto and that has the property
that whenever (x, y) ∈ A, then there is a vertex u ∈ f−1(x) and there is a
vertex v ∈ f−1(y) such that (u, v) ∈ E.

Parameter: H

FPT (by the perfect hashing method [81, Exercise 8.3.4])

Grouping By Swapping

Instance: A finite alphabet Σ; a string x ∈ Σ∗; a positive integer k.

Question: Is there a sequence of k or fewer adjacent symbol interchanges
that transforms x into a string x′ in which all occurrences of each symbol
a ∈ Σ are in a single block?

Parameter: k

FPT (by the reduction to the problem kernel method [81, Exer-
cise 3.2.4])

Half-Weight (t + 1)-Norm SATlog n

Instance: A t-normalized circuit C with n gates and k log n input lines.

Question: Does there exist a half-weight satisfying assignment for C? (The
weight of the assignment is half of the number of input lines.)

Parameter: k
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W[t]-hard (reduction from Weighted Antimonotone q-CNF
Satisfiability with q = 2 (t = 1), from Weighted Mono-
tone t-Normalized Satisfiability (t > 1 even), and from
Weighted Antimonotone t-Normalized Satisfiability (t
odd) [49])

Note: A boolean expression is t-normalized if it is of the form product-of-
sums-of-products . . . of literals with t alternations. The problem restricted
to circuits having just k input lines is in FPT by the trivial algorithm that
tries all possible half-weight assignments to the input lines. Actually, the
problem restricted to circuits having ks(n) input lines is in FPT, provided
that s(n) = o (log n) [49].

Hitting Set

Instance: A finite family of sets E = S1, . . . , Sn comprised of elements from
V = {u1, . . . , um} (equivalently, an hypergraph G with vertices in V and
hyperedges S1, . . . , Sn); a positive integer k.

Question: Is there a subset T ⊆ V of size at most k such that for all Si ∈ E,
Si ∩ T 6= ∅?

Parameter: k

W[2]-complete (hardness: reduction from Set Cover [210];
membership: direct proof)

Parameter: |E|

FPT (by a O∗(2|E|
)

“dynamic programming on subsets” algo-
rithm that finds a minimum hitting set [125])

Parameter: k, max {|Si ∩ Sj | : 1 ≤ i < j ≤ n}

FPT (reported in [196])

Note: See also Hitting Set For Size d Sets. The general problem is
equivalent to Red-Blue Dominating Set [118].

Hitting Set For Size d Sets

Instance: A collection C of subsets of a set S, where each subset has size
bounded by d (d ≥ 3); a positive integer k.

Question: Does S contain a hitting set for C of size at most k? (An hitting
set is a subset S′ ⊆ S such that S′ contains at least one element from each
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set in C.)

Parameter: k

FPT (tractability has been shown initially for d = 3 by means of
a reduction to problem kernel (D. Bryant) [81, Exercise 3.2.10];
tractability for arbitrary d has been proved in [173]; current best
algorithm for arbitrary d has been devised by H. Fernau [117, 118]

and has time complexity in O
((

d−1
2

(
1 +

√
1 + 4

(d−1)2

))k
+ n

)
;

for d = 3, the current best algorithm has time complexiy in
O

(
2.179k + n

)
[175, 117] )

Note: See also Hitting Set. If d = 2, the problem reduces to Vertex
Cover.

Immersion Order Test

Instance: Graphs G and H.

Question: Is H ≤ G in the immersion ordering?

Parameter: H

Open (reported in [81])

Independent Dominating Set

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a set V ′ ⊆ V of cardinality k that is both an independent
set and a dominating set in G?

Parameter: k

W[2]-complete ([75])

Note: This problem is equivalent to Minimum Maximal Independent
Set [118]. Its parameterized dual is Maximum Minimal Vertex Cover,
which is in FPT. See also Planar Independet Dominating Set.

Independent Set

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a set V ′ ⊆ V of cardinality k such that ∀u, v ∈ V ′,
(u, v) 6∈ E?
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Parameter: k

W[1]-complete (membership is trivial; direct proof for hardness
[78, 81])

Note: The problem is equivalent to Clique. See also Planar Indepen-
dent Set.

Induced 3CNF Satisfiability

Instance: A boolean formula ϕ in conjunctive normal form such that each
clause has exactly three literals; a positive integer k.

Question: Is there a set of k variables and a truth table assignment to those
variables that causes ϕ to unravel?

Parameter: k

W[P]-complete (hardness: reduction from Chain Reaction
Closure [2, 3])

Induced Formula Satisfiability

Instance: A boolean formula ϕ; a positive integer k.

Question: Is there a set of k variables and a truth table assignment to those
variables that causes ϕ to unravel?

Parameter: k

W[P]-complete (hardness: reduction from Induced 3CNF
Satisfiability [2])

Induced Minor Order Testing For Planar Graphs

Instance: Planar graphs G and H.

Question: Is G ≥ H in the induced minor order?

Parameter: H

FPT ([110])

Integer Weighted Vertex Cover

Instance: A graph G = (V,E); a weight function ω : V → N+; a positive
integer k.
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Question: Is there a subset of vertices V ′ ⊆ V of weight at most k such that
every edge of G has at least one endpoint in V ′?

Parameter: k

FPT (solvable in time O
(
1.271k + kn

)
[174, 61])

Note: See also Vertex Cover and Real Weighted Vertex Cover.

InvMax

Instance: A circuit C; an initial configuration conf 0 describing the placing
of inverters on connections between gates in C; a positive integer k.

Question: Is there a subset A of the gates in C to which DeMorgan’s rules
can be applied such that the resulting circuits will have at least k gates
without any inverters attached to their output lines?

Parameter: k

W[1]-hard (reduction from Independent Set [210])

i/o-Deterministic FST Composition

Instance: An alphabet Σ; an ordered set of k i/o-deterministic finite state
transducers A1, . . . , Ak on the common input and output alphabet Σ; a
string u ∈ Σ+ (let also define q = max {|Qi| : 1 ≤ i ≤ k}, where Qi (1 ≤
i ≤ k) is the state set of the FST Ai).

Question: Is there a sequence of strings s0, s1, . . . , sk with s0 = u and si ∈
Σ|u| for 1 ≤ i ≤ k such that si−1/si is accepted by Ai for 1 ≤ i ≤ k?

Parameter: k

W[t]-hard for all t (reduction from Bounded DFA
Intersection [212]; it remains W[t]-hard for all t if |Σ|
is equal to 3 [212])

Parameter: q, |u|
W[2]-hard (reduction from Bounded DFA Intersection
[212])

Parameter: k, |u|
W[1]-hard (reduction from Bounded DFA Intersection
[212])

Parameter: k, q
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FPT (reported in [212])

Parameter: |u|, |Σ|
FPT (from a variant of an algorithm in [211, Theorem 4.3.3, Part
(3)] that uses an |Σ||u|-length bit-vector to store the intermediate
sets of strings produced during the FST composition)

Parameter: q, |Σ|

Open (reported in [212])

Note: A (singleton, ε-free) FST is a 6-tuple (Q, ΣI , ΣO, δ, σ, F ) where Q is a
set of states, ΣI and ΣO are the input and output alphabets, δ : Q× ΣI ×
ΣO × Q is a transition relation, σ ∈ Q is the start state, and F ⊆ Q is a
set of final states. A FST is i/o-deterministic if for each q ∈ Q, x ∈ ΣI and
y ∈ ΣO, there is at most one q′ ∈ Q such that (q, x, y, q′) ∈ δ. The general
problem is NP-hard, and the problem parameterized by |Σ| alone is not in
XP unless P = NP.

i/o-Deterministic FST Intersection

Instance: An input alphabet ΣI and an output alphabet ΣO; a set of k i/o-
deterministic finite state transducers A1, . . . , Ak on the common alphabets
ΣI and ΣO; a string u ∈ Σ+

I .

Question: Is there a string s ∈ Σ|u|
O such that the string-pair u/s is accepted

by each FST Ai, 1 ≤ i ≤ k?

Parameter: k

W[t]-hard for all t (reduction from Bounded DFA
Intersection [212]; it remains W[t]-hard for all t even
when |ΣI | = 1 and |ΣO| = 2 [212])

Parameter: q, |u|
W[2]-hard (reduction from Bounded DFA Intersection [212];
it remains W[2]-hard even when |ΣI | = 1 [212])

Parameter: k, |u|
W[1]-hard (reduction from Bounded DFA Intersection [212];
it remains W[1]-hard even when |ΣI | = 1 [212])

Parameter: |u|, |ΣO|

FPT (reported in [212])

Parameter: k, q
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FPT (reported in [212])

Parameter: q, |ΣI |, |ΣO|

FPT (reported in [212])

Note: See i/o-Deterministic FST Composition for a definition of i/o-
deterministic FST. The unparameterized version of the problem is NP-hard,
even either when |ΣI | = 1 and |ΣO| = 2 [212], or when q = 4 and |ΣO| = 3
[18, Section 5.5.3].

Irredundant Set

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a set V ′ ⊆ V of cardinality k having the property that
each vertex u ∈ V ′ has a private neighbor? A private neighbor of a vertex
u ∈ V ′ is a vertex u′ ∈ N [u] (possibly u′ = u) with the property that for
every vertex v ∈ V ′ \ {u}, u′ 6∈ N [v].

Parameter: k

W[1]-complete (membership: [77]; hardness: [84])

Note: See also Maximal Irredundant Set.

Jump Number

Instance: A poset (P,≤); a positive integer k.

Question: Is the jump number of P lesser than or equal to k?

Parameter: k

Open (reported in [81])

Large Stable Model

Instance: A finite propositional logic program P ; a positive integer k.

Question: Does there exist a stable model for P of size at least |P | − k,
where |P | denotes the number of rules in P?

Parameter: k

FPT (O
(

2k+k2 · |P |
)

algorithm [208])

Note: A model M of a logic program P is a stable model if M coincides with
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the minimal Herbrand model M for the the logic program PM obtained
from P by deleting (i) each rule having a negative literal ¬v in its body
with v ∈ M and (ii) all negative literals in the bodies of the remaining rules
[131]. See also Small Stable Model.

t-Layer Planarization

Instance: A graph G = (V,E); positive integers k and r.

Question: Is there a partition of V in t sets V1, . . . Vt (t ≥ 3) and a subset of
edges C ⊆ E with |C| ≤ k such that if the vertices are placed in t parallel
lines L1, . . . Lt in the plane (where the vertices from Vi are placed on Li), the
number of edge crossings when the edges in E \C are drawn as straight-line
segments is at most r?

Parameter: k, r

FPT (pathwidth-based algorithm in [91])

Note: This problem is a generalization of One-Layer Planarization,
Two-Layer Planarization, and One-Sided Crossing Minimization.

Linear Arrangement

Instance: A connected graph G = (V,E); a positive integer k.

Question: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such that∑
(u,v)∈E |σ(u)− σ(v)| ≤ k?

Parameter: k

FPT (by reduction to problem kernel, which yields a
O(((1 + ε)k)! + pε(|G|)) algorithm, where pε is a polynomial
whose degree depends on the choice of ε ≤ 1 [118])

Parameter: k − |E|

FPT (O
(
|E|+ |V |+ 5.88k

)
algorithm [140]; this is one of the few

examples of results for problems “parameterized above guaran-
teed value” [118])

Parameter: qd(G)

FPT (proved in [141]; qd(G) represents the minimum number of
edges that have to be deleted from the complement of G in order
to obtain a collection of disjoint cliques)

Note: The classical version of this problem is NP-complete [129, 118]. See
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also Bandwidth, Edge Average Min Linear Arrangement, Ver-
tex Average Min Linear Arrangement, Linear Arrangement By
Deleting Edges, Directed Linear Arrangement, and Linear Ar-
rangement Generalized To A Vector p-Norm.

Linear Arrangement By Deleting Edges

Instance: A graph G = (V,E); a positive integer k.

Question: Is there an edge set E′ ⊆ E with |E′| ≤ k and a one-to-one map-
ping σ : V → {1, . . . , |V |} such that

∑
(u,v)∈E\E′ |σ(u)− σ(v)| = |E \ E′|?

Parameter: k

FPT (O
(
3k |G|

)
algorithm [118])

Note: The classical version of this problem is NP-complete [118]. See also
Linear Arrangement.

Linear Arrangement Generalized To A Vector p-Norm

Instance: A connected graph G = (V,E), where E = {e1, . . . , em}; a positive
integer k.

Question: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such that
‖σE‖p ≤ k? The p-norm ‖·‖p (1 < p < ∞) of a vector (x1, . . . , xn) is given
by p

√∑n
i=1 |xi|p. For every edge (u, v) ∈ E, σE((u, v)) = |σ(u)− σ(v)|. Fi-

nally, ‖σE‖p is the p-norm of the vector (σE(e1), . . . , σE(em)).

Parameter: k

FPT (by reduction to a problem kernel of size kp [118]. The same
result holds when the edges are associated with integer weights
≥ 1, and when replacing edges with hyperedges [118].)

Note: The complexity of the classical version of this problem for p 6∈ {1,∞}
is open [150]. For p = 1 this problem reduces to Linear Arrangement,
and for p = ∞ (maximum function) it reduces to Bandwidth. The param-
eterized complexity of the version in which p (6= ∞) is part of the instance
is open [118].

Linear Extension Count

Instance: A poset (P,≤); a positive integer k.
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Question: Does P have at least k linear extensions?

Parameter: k

randomized FPT ([39, 40])

Linear Inequalities

Instance: A system of linear inequalities; a positive integer k.

Question: Can we delete k of the inequalities and get a system that is con-
sistent over the rationals?

Parameter: k

W[P]-complete (hardness: reduction from Weighted Mono-
tone Circuit Satisfiability [2, 3])

Log Circuit Satisfiability

Instance: A boolean circuit C.

Question: Does C have a satisfying assignment?

Parameter: d|X| / log |C|e

M[P]-complete ([103, 104, 73, 123])

Log Formula Satisfiability

Instance: A boolean expression F with variables in X.

Question: Does F have a satisfying truth assignment?

Parameter: d|X| / log |F |e

M[SAT]-complete ([103, 104, 73, 123])

Log Vertex Cover

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a vertex cover C ⊆ V with |C| ≤ k log(|V |)?

Parameter: k

M[1]-complete ([103, 104, 73, 123])

Note: See also Vertex Cover and Miniaturized Vertex Cover.
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Long Cycle

Instance: A graph G = (V,E); a positive integer k.

Question: Does G have a cycle of length at least k?

Parameter: k

FPT (Fellows and Langston [114])

Note: See also Exact Long Cycle, which requires a different proof tech-
nique.

Longest Common Subsequence

Instance: An alphabet Σ; a set of k strings r1, . . . , rk over the alphabet Σ;
a positive integer λ.

Question: Is there a string s ∈ Σ∗ of length at least λ that is a subsequence
of each ri, for i = 1, . . . , k? (A string s is a subsequence of a string r if we
can delete some characters in r such that the remaining string is equal to s.)

Parameter: k

W[t]-hard for all t (reduction from Weighted Monotone t-
Normalized Satisfiability [81, 29, 28])

Parameter: k, |Σ|
W[t]-hard for all t (reduction from Longest Common
Subsequence parameterized by k [27])

Parameter: λ

W[2]-hard, in W[P] (membership is easy; hardness: reduction
from Dominating Set [28], [81, Exercise 12.0.6]; in FPT if |Σ|
is parameter, by the trivial algorithm that generates all |Σ|λ pos-
sible subsequence strings and checks them against each ri)

Parameter: k, λ

W[1]-complete (membership: reduction to Weighted q-CNF
Satisfiability [81, 29, 28]; hardness: reduction from Clique
[81, 29, 28])

Parameter: k, max. number of occurrences of each character in each string

FPT (O
(
22k log h · k · n2

)
algorithm in [137], where h denotes the

maximum number of occurrences of each character a ∈ Σ in each
string r1, . . . , rk)

Note: See also Fixed Alphabet Longest Common Subsequence.
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Matrix Domination

Instance: An n× n boolean matrix M ; a positive integer k.

Question: Is there a set C of k or fewer nonzero entries in M that dominate
all others, in the sense that every nonzero entry in M is in the same row or
in the same column as some element of C?

Parameter: k

FPT (by a combination of search tree and reduction to problem
kernel methods [81, Exercise 3.2.9]; also, in FPT by means of
a fixed-parameter reduction to Edge Dominating Set [214],
which yields a O∗(2.6181k

)
algorithm [118])

Matrix Row Column Merging

Instance: An matrix M ∈ {0, 1}n×m; a positive integer k.

Question: Is it possible to get the all-zeros matrix by merging at most k
neighboring rows or columns of M? The merging operation performs a
component-wise logical AND.

Parameter: k

FPT (by a O
(
2.6181k mn

)
algorithm in [116])

Note: NP-completeness of this problem is proved in [116].

Maximal Irredundant Set

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a set V ′ ⊆ V of cardinality k such that (1) each vertex
u ∈ V ′ has a private neighbor and (2) V ′ is not a proper subset of any
V ′′ ⊆ V that also has this property? A private neighbor of a vertex u ∈ V ′

is a vertex u′ ∈ N [u] (possibly u′ = u) with the property that for every
vertex v ∈ V ′ − {u}, u′ 6∈ N [v].

Parameter: k

W[2]-hard, in W[P] (membership: reduction to Bounded Non-
determinism Turing Machine Computation [53]; hardness:
reduction from Dominating Set [26])

Note: See also Irredundant Set.
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Maximum Agreement Subtree

Instance: A set {T1, . . . , Tn} of binary rooted trees with equal label set L; a
positive integer k.

Question: Is there a set of labels Λ ⊆ L, |Λ| ≤ k, such that all trees Ti \ Λ
are isomorphic?

Parameter: k

FPT (by a reduction to Hitting Set For Size d Sets with
d = 3 [118])

Note: A phylogeny is a rooted tree T whose leaf set is in bijection with a
label set L. In this problem the rooted tree is always binary, i.e., all inner
nodes but the root have degree three; the root has degree two. To maintain
this property, label deletion propagates as follows: Assume that x is an inner
node with children y and z, where z is a leaf that is going to be deleted.
Upon deleting z, x would have a degree that is too small. Therefore, x is
deleted as well. Two subcases arise: (1) x is the root of the tree: then, y
will be the root of the tree that is produced. (2) x is not the root of the
tree: then, x is the child of another node x′, and an edge between x′ and y is
added in the tree that is produced to maintain it connected. The notation
T \ Λ denotes the tree that is produced from T by deleting all labels in the
set Λ.

Maximum Cut

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a cut set C ⊆ E with |C| ≥ k? A cut set C is a subset of
edges such that (V,E \ C) is a bipartite graph.

Parameter: k

FPT (reduction to problem kernel of 2k edges [166]; kernels
with 2k edges have been also obtained with different meth-
ods in [163, 185]; current best algorithm has running time in
O

(
k · 2k/2 + |V |2

)
[185])

Parameter: k − d|E| /2e

FPT ([166, 185, 187])

Note: The parametric dual of this problem is Bipartization By Edge
Removal. The current best exact algorithm for this problem has running
time in O∗(2|E|/4

)
[100, 101].
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Maximum Knapsack

Instance: A set of n items {x1, . . . , xn} with sizes s1, . . . , sn and profits
p1, . . . , pn, the knapsack capacity b, and the profit threshold k (all numbers
are encoded in binary).

Question: Is there a subset of items that yields a profit larger than k and
has overall size less than b?

Parameter: k

FPT (actually, in efficient-FPT because the classical problem
admits a fully polynomial-time approximation scheme (FPTAS)
[15, 59]; also in [45])

Parameter: b

FPT (reduction to problem kernel [118])

Maximum Leaf Spanning Tree

Instance: A graph G = (V,E); a positive integer k.

Question: Does G have a spanning tree with k or more leaves?

Parameter: k

FPT (Downey and Fellows [81], correcting [79]; also Bodlaender
[24]; also in LOGSPACE+advice [47]. A fast FPT algorithm
is in [37]. The current best algorithm has time complexity in
O∗(9.4815k

)
[187].)

Maximum Likelihood Decoding

Instance: A binary m × n matrix H; a target vector s ∈ Fm; a positive
integer k.

Question: Is there a set of at most k columns of H that sum to s?

Parameter: k

W[1]-hard, in W[2] ([89])

Note: See also Weight Distribution.

Maximum Minimal Vertex Cover

Instance: A graph G = (V,E); a positive integer k.
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Question: Does there exist a minimal vertex cover set of cardinality ≥ k?

Parameter: k

FPT (O∗(2k
)

algorithm in [118]; the problem restricted to planar
graphs admits a problem kernel of size 4k − 4 [118])

Note: The paramerized dual of this problem is Independent Dominating
Set, which is W[2]-complete.

Maximum Satisfiability

Instance: A Boolean formula F in conjunctive normal form (CNF), with m
clauses and variables in X; a positive integer k.

Question: Is there an assignment α : X → {true, false} such that at least
k clauses in F evaluate to true under α?

Parameter: k

FPT (by a trivial reduction to problem kernel of size 2k [166])

Parameter: k −m/2

FPT (by a search tree algorithm in [166], then improved in [134])

Miniaturized Circuit Satisfiability

Instance: A Boolean circuit C; a positive integer m encoded in unary.

Question: Is there a setting of the inputs that cause C to output 1?

Parameter: d|C| / log me

M[1]-complete ([123])

Miniaturized d-CNF Satisfiability

Instance: A Boolean formula F in conjunctive normal form (CNF) with
variables in X and each clause of at most d literals (d ≥ 3); a positive
integer m encoded in unary.

Question: Is there a satisfying assignment α : X → {true, false} for F?

Parameter: d|F | / log me

M[1]-complete ([49, 73, 123])

Note: See also 3-CNF Satisfiability.
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Miniaturized d-Colorability

Instance: A graph G = (V,E); a positive integer m encoded in unary.

Question: Is G d-colorable, that is, does there exists a function c : V →
{1, . . . , d} such that ∀ (v, w) ∈ E, c(v) 6= c(w)?

Parameter: d|G| / log me

M[1]-complete ([123])

Note: The classical non-miniaturized version of this problem is NP-complete
for any d ≥ 3 [130].

Miniaturized Clique

Instance: A graph G = (V,E); a positive integer k; a positive integer m
encoded in unary.

Question: Is there a clique C ⊆ V with |C| ≤ k?

Parameter: d|G| / log me
FPT (trivial corollary of a general theorem: a miniaturized pa-
rameterized problem is in FPT if and only if the classical (non-
miniaturized) version of the same problem is in DTIME(2oeff(n)),
where n denotes the length of the instance of the problem [123])

Note: See also Clique. Notice that Miniaturized Independent Set is
M[1]-complete.

Miniaturized Independent Set

Instance: A graph G = (V,E); a positive integer k; a positive integer m
encoded in unary.

Question: Is there an independent set C ⊆ V with |C| ≤ k?

Parameter: d|G| / log me

M[1]-complete ([103, 104, 73, 123])

Note: See also Independent Set. Notice that Miniaturized Clique is
in FPT.

Miniaturized Vertex Cover

Instance: A graph G = (V,E); a positive integer k; a positive integer m
encoded in unary.

51



Question: Is there a vertex cover C ⊆ V with |C| ≤ k?

Parameter: d|G| / log me

M[1]-complete ([103, 104, 73, 123])

Note: See also Vertex Cover and Log Vertex Cover.

Miniaturized Weighted Circuit Satisfiability

Instance: A boolean circuit C; a positive integer k; a positive integer m
encoded in unary.

Question: Does C have a satisfying assignment of Hamming weight k?

Parameter: d|C| / log me

M[1]-complete ([103, 104, 73, 123])

Note: See also Weighted Circuit Satisfiability.

Miniaturized Weighted q-CNF Satisfiability

Instance: A boolean expression X in conjunctive normal form (CNF) such
that each clause has no more than q literals (q ≥ 2); a positive integer k; a
positive integer m encoded in unary.

Question: Does X have a satisfying truth assignment of weight k?

Parameter: d|X| / log me

M[1]-complete ([103, 104, 73, 123])

Note: See also Weighted q-CNF Satisfiability.

Minimal Diagnosis

Instance: A finite set of faults F ; a set of effects M ; a function e : F → 2M

relating faults and effects; a set of observed effects M ′ ⊆ M ; a positive
integer k.

Question: Is there a set F ′ ⊆ F with |F ′| ≤ k such that M ′ ⊆
⋃

f∈F ′ e(f)?

Parameter: |e|
FPT (by building a two-column exponential-size table containing
the set of effects corresponding to every subset of failures and,
accordingly, the size of the minimal diagnosis [160])
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Parameter: |M ′|

FPT ([118])

Note: As noted in [118], this problem is essentially a reparameterization of
Hitting Set.

Minimum Axiom Set

Instance: A finite set S of “sentences”; an “implication relation” R consisting
of pairs (A, t) where A ⊆ S and t ∈ S; a positive integer k.

Question: Is there a set S0 ⊆ S with |S0| ≤ k and a positive integer n such
that if we define Si, 1 ≤ i ≤ n, to consist of exactly those t ∈ S for which
either t ∈ Si−1 or there exists a set U ⊆ Si−i such that (U, t) ∈ R, then
Sn = S?

Parameter: k

W[P]-complete (membership: reduction to Weighted Mono-
tone Circuit Satisfiability [2]; hardness: reduction from
Weighted Circuit Satisfiability [2, 83, 82])

Minimum Degree Graph Partition

Instance: A graph G = (V,E); positive integers k and d.

Question: Can V be partitioned into disjoint subsets V1, . . . , Vm so that, for
1 ≤ i ≤ m, |Vi| ≤ k and at most d edges have exactly one endpoint in Vi?

Parameter: k, d

Open (reported in [81])

Minimum Disjunctive Normal Form

Instance: A set X = {x1, x2, . . . , xn} of variables; a set A ⊆ {0, 1}n of
implicants; a positive integer m.

Question: Is there a Disjunctive Normal Form expression E over X, having
no more than m disjuncts, such that E is true for precisely those truth
assignments in A and no others?

Parameter: |A|

FPT (solvable in O
(
2|A|n

)
time [83, 82])
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Minimum Fill-in

Instance: A graph G = (V,E); a positive integer k.

Question: Can we add no more than k edges to G and cause G to become
chordal?

Parameter: k

FPT (solvable in time O
(
ck · |E|

)
and O

(
k5 · |E| · |V |+ f(k)

)
[155])

Minimum Inner Node Spanning Tree

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a spanning tree of G with at most k inner nodes?

Parameter: k

W[2]-hard ([103]. Equivalent to Connected Dominating Set,
and dual of Maximum Leaf Spanning Tree [118].)

Minimum Maximal Independent Set

Instance: A graph G = (V,E); a positive integer k.

Question: Does there exist a maximal independent set of cardinality ≤ k?
A maximal independent set is a subset U ⊆ V such that if u, v ∈ U then
(u, v) 6∈ E and ∀w ∈ V − U , there exists u ∈ U such that (u, w) ∈ E.

Parameter: k

W[2]-complete (equivalent to Independent Dominating Set
[118])

Minimum Partition

Instance: A finite set X = {x1, . . . , xn}; a weight function w : X → R≥1; an
integer k.

Question: Is there a set Y ⊂ X such that max
{∑

y∈Y w(y),
∑

z 6∈Y w(z)
}
≤

k?

Parameter: k

FPT (reduction to problem kernel [118])
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Minimum Quartet Inconsistency

Instance: A set S of n taxa; a set QS of
(
n
4

)
quartet topologies such that

there is exactly one topology for every quartet corresponding to S; a positive
integer k.

Question: Is there an evolutionary tree T where the leaves are bijectively
labeled by the elements from S such that the set of quartet topologies in-
duced by T differs from QS in at most k quartet topologies?

Parameter: k

FPT (solvable in time O
(
4kn + n4

)
[135]; observe that the input

size is O
(
n4

)
)

Note: An evolutionary tree for S is a binary tree T in which the leaves
are bijectively labeled by the set of taxa S; a quartet is a size four subset
{a, b, c, d} ⊆ S. The topology for {a, b, c, d} induced by T is the four-leaves
subtree of T induced by {a, b, c, d}; for every quartet there are three possible
topologies. The general problem is NP-complete [19, 152], but it is solvable
in polynomial time if k < (n− 3)/2 [200].

Minimum Terminal Pair Separation

Instance: A graph G = (V,E); pairs of vertices (s1, t1), (s2, t2), . . . , (s`, t`);
an integer k.

Question: Is there a set of vertices S ⊆ V of size at most k such that for
every 1 ≤ i ≤ `, vertices si and ti are in different connected components of
G \ S?

Parameter: k

Open (reported in [167])

Parameter: k, `

FPT (O∗
(

2k`kk+14k3
)

search tree algorithm in [167])

Note: This problem and its edge-deletion variant are equivalent. The clas-
sical problem is NP-hard even for ` = 3 [64]. See also Minimum Terminal
Separation.

Minimum Terminal Separation

Instance: A graph G = (V,E); a set of terminals T ⊆ V ; an integer k.
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Question: Is there a set of vertices S ⊆ V of size at most k such that no two
vertices of T belongs to the same connected component of G \ S?

Parameter: k

FPT (O∗
(
kk+14k3

)
search tree algorithm in [167])

Note: This problem and its edge-deletion variant are equivalent. The classi-
cal problem is NP-hard even for |T | = 3 [64]. See also Minimum Terminal
Pair Separation.

Minor Order Test

Instance: Graphs G = (V,E) and H = (U,A).

Question: Is H a minor of G?

Parameter: H

FPT (solvable in O
(
|V |3

)
for fixed H [193])

Module Allocation On Graphs Of Bounded Treewidth

Instance: A set of modules M = {1, 2, . . . ,m}; a set of processors P =
{1, 2, . . . , p}; a cost function e : (M × P ) → R, where e(x, y) is the cost of
executing module x ∈ M on processor y ∈ P ; a communication cost function
C : (M × P ×M × P ) → R where C(x, y, x′, y′) is the communication cost
when module x is assigned to processor y and module x′ is assigned to
processor y′; a communication graph G = (M,E); a positive real number l.

Question: Does there exist an assignment of modules to processors such that
the total cost of execution is less than or equal to l?

Parameter: treewidth(G)

W[t]-hard for all t ([31, 33])

Monochrome Cycle Cover

Instance: An edge-colored graph G = (V,E); a positive integer k.

Question: Is there a set of k vertices V ′ ⊆ V with the property that every
monochrome cycle in G contains a vertex in V ′?

Parameter: k
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W[2]-hard, in W[P] ([81, Appendix A] reports that this problem
is W[2]-hard and in W[P] by Downey and Fellows (unpublished))

Monoid Factorization

Instance: A set A of self-maps on [n]; a self-map h on [n]; an integer k.

Question: Is there a factorization of h of length k over A?

Parameter: k

W[2]-hard, in W[P] (membership: direct proof ? [48]; hardness:
reduction from Dominating Set [48])

More Than Half MAX-3SAT

Instance: An expression E in conjunctive normal form such that each clause
has exactly 3 literals; a positive integer k.

Question: Is there a truth assignment that satisfies at least
⌈

n
2

⌉
+ k clauses

of E?

Parameter: k

FPT (by the reduction to problem kernel method (V. Raman)
[81, Exercise 3.2.8])

Multidimensional Matching

Instance: A set M ⊆ X1× . . .×Xr, where the Xi are disjoint sets; a positive
integer k.

Question: Is there a subset M ′ ⊆ M with |M ′| = k, such that no two
elements of M ′ agree in any coordinate?

Parameter: r, k

FPT (by the perfect hashing method [81])

Multi-Hitting Set For Size d Sets

Instance: A hypergraph G = (V,E), with each hyperedge of size at most d;
positive integers k and `.

Question: Is there a multi-hitting set C ⊆ V with |C| ≤ k, that is, C satisfies
∀e ∈ E ∃c ⊆ e s.t. (|c| ≥ ` ∧ c ⊆ C)?

57



Parameter: k, `

FPT (O∗(dk
)

search tree algorithm in [118])

Note: The variant where d is arbitrarily large is W[2]-hard by the trivial
reduction from Hitting Set.

Nearest Vector

Instance: A basis X = {x1, . . . , xn} ⊂ Zn for a lattice  L; a target vector
s ∈ Zn; a positive integer k.

Question: Is there a vector x ∈  L such that ‖x− s‖2 ≤ k?

Parameter: k

W[1]-hard (reduction from Perfect Code [89])

Note: See also Theta Series.

Nearly A Partition

Instance: A finite set X; a family F of subsets of X; a positive integer k.

Question: Is there a subfamily F ′ ⊆ F with |F ′| ≤ k such that F − F ′ is a
partition of X?

Parameter: k

FPT (by a combination of search tree and reduction to problem
kernel methods [81, Exercise 3.2.9])

Nonblocker Set

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a nonblocker set N ⊆ V with |N | ≥ k? N is a nonblocker
set if, for each v ∈ V , there exists u 6∈ N such that (u, v) ∈ E.

Parameter: k

FPT (by reduction to a problem kernel of at most 5/3 k vertices,
which yields a O∗(3.0701k

)
algorithm [118, unpublished result

by F. Dehne, M. Fellows, E. Prieto, F. Rosamond]; this result
can be improved to a O∗(3.0121k

)
algorithm for general graphs,

and to a O∗(2.4932k
)

algorithm for bipartite graphs [125, 118];
finally, by using exponential space, the problem can be solved in
time and space O∗(2.5154k

)
[118])
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Note: This problem is the parameterized dual of Dominating Set when
taking as size function the number of vertices of G. Essentially, the same
reduction to problem kernel works for a reparameterization of this problem,
in which the nonblocker set must be larger than or equal to δ |V |+ k, where
δ ∈ (0, 3/5) is a fixed real constant [118].

Non-Uniform Register Allocation

Instance: A structured program P having dynamically allocated variables
of types t1, . . . , tk (k ≥ 2); positive integers w1, . . . , wk.

Question: Can P be compiled in such a way that all dynamically allocated
variables of type ti are assigned to at most wi hardware registers (1 ≤ i ≤ k)
without spilling?

Parameter: w1, . . . , wk (without rescheduling)

FPT (solvable in time O(f(k) · |P |) [22])

Parameter: w1, . . . , wk (with rescheduling)

W[t]-hard for all t (reduction from 2-Colored Directed Ver-
tex Separation Number [22])

Note: A structured program is a program encoded in a high-level language
without gotos. Spilling is the act of temporarily saving some variables on the
stack in order to free the corresponding hardware registers. Compilers may
or may not reorder the program statements (rescheduling), as long as the
data dependencies are not violated. For k = 1, refer to Uniform Register
Allocation.

Odd Set

Instance: A red/blue graph G = (R,B, E); a positive integer k.

Question: Is there a set of at most k vertices R ⊆ R such that each member
of B has an odd number of neighbours in R?

Parameter: k

W[1]-hard (reduction from Perfect Code [89])

Note: See also Exact Odd Set, Exact Even Set, Even Set.

59



One-Layer Planarization

Instance: A bipartite graph G = (V1, V2, E); a linear ordering < on V1; a
positive integer k.

Question: Is there a set C ⊆ E, |C| ≤ k, whose removal allows a biplanar
drawing of the graph that respects < on V1?

Parameter: k

FPT (O
(
k3 · 2.5616k + |G|2

)
algorithm in [92, 118])

Note: A bipartite graph G = (V1, V2, E) is biplanar if the vertices can be
placed on two parallel lines L1 and L2 in the plane (where the vertices from
Vi are placed on Li) such that there are no edge crossings when edges are
drawn as straight-line segments. See also Two-Layer Planarization and
One-Sided Crossing Minimization.

One-Sided Crossing Minimization

Instance: A bipartite graph G = (V1, V2, E); a linear order ≺1 on V1; a
positive integer k.

Question: Is there a linear order ≺ on V2 such that, when the vertices from
V1 are placed on a line (also called layer) L1 in the order induced by ≺1

and the vertices from V2 are placed on a second layer L2 (parallel to L1) in
the order induced by ≺, then drawing straight lines for each edge in E will
introduce no more than k edge crossings?

Parameter: k

FPT (results in [91, 92, 94, 95, 93]; current best algorithm has
time complexity in O∗(1.4656k

)
[93])

One-Tree Drawing By Deleting Edges

Instance: A binary tree T with leaf labels Λ; a linear ordering ≺ on Λ; a
positive integer k.

Question: Is there a label set L ⊆ Λ with |L| ≤ k such that the tree produced
by deleting the leaves associated with labels in L can be drawn without
crossing in the plane, so that the leaves in Λ \ L are arranged according to
the ordering ≺ on some line?

Parameter: k
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FPT (O∗(2.179k
)

algorithm in [118])

Partitioned Clique

Instance: A graph G = (V,E); an integer k; a partition {U1, . . . , Uk} of V
into k sets of equal size (|V | must be a multiple of k).

Question: Is there a subset V ′ ⊆ V of cardinality k such that for each
u, v ∈ V ′, (u, v) ∈ E and for each 1 ≤ i ≤ k, |V ′ ∩ Ui| = 1?

Parameter: k

W[1]-complete (reduction from and to Clique [182])

3-Path Packing

Instance: A graph G = (V,E); a positive integer k.

Question: Are there k vertex disjoint instances of K1,2 (i.e., a path of length
three) in G?

Parameter: k

FPT (by a reduction to problem kernel of size 15k yielding a
O∗(25.3k

)
algorithm [186])

Note: See also Triangle Packing, s-Star Packing, and Graph Packing.

Pathwidth

Instance: A graph G = (V,E); a positive integer k.

Question: Is the pathwidth of G no more than k?

Parameter: k

FPT (Fellows and Langston [113]; also Bodlaender’s O(f(k) · n)
algorithm [23])

Note: Equivalent to Gate Matrix Layout.

Pebble Game

Instance: A pebble game (N,R, S, T ); a positive integer k.

Question: If |S| = k determine if I has a winning strategy

Parameter: k
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XP-complete (membership: direct proof [81]; hardness: direct
proof [5, 6, 81])

Note: A Pebble Game is a quadruple (N,R, S, T ) consisting of a finite set of
vertices N , a set of rules R ⊆ {(x, y, z) |x, y, z ∈ N,x 6= y, y 6= z}, the start
set S ⊂ N , the terminal vertex T ∈ N . The game is played by Player I and
Player II, who alternatively move pebbles on the nodes. At the beginning
of the game, pebbles are placed on all the start nodes. If (x, y, z) ∈ R, and
there are pebbles upon x and y but not on z, then a Player can move a
pebble from x to z. The winner is the first Player to put a pebble on T or
can force the opponent into a position where the opponent cannot move.

Peg Game

Instance: A peg game G = (V, k, l); a positive integer k.

Question: Does Player I have a winning strategy?

Parameter: k

XP-complete (membership: direct proof [81]; hardness: reduc-
tion from Pebble Game [5, 6])

Note: Let Q be a set of integers. The Peg Game is a triple G = (V, k, l) with
k, l ∈ Q and V ⊆ V l such that (v1, . . . , vl) ∈ V l implies that v1 + . . .+vl = 0.
A play of the Peg Game is as follows. There are l pegs on the board and
k rings. The interpretation of the vector (v1, . . . , vl) ∈ V is that for each i,
if vi ≥ 0, then we put vi rings on the ith peg, and if vi ≤ 0, we remove vi

rings from the ith peg. Initially, all k rings are on the first peg. Players play
alternatively according to the rules V of the game. The Player who wins is
the one who places all k rings on the last peg, or who forces the opponent
into a position where the opponent has no valid play.

Perfect Code

Instance: A graph G = (V,E); a positive integer k.

Question: Does G have a k-element perfect code? A perfect code is a set
of vertices V ′ ⊆ V with the property that for each vertex v ∈ V , there is
precisely one vertex in N [v] ∩ V ′.

Parameter: k

W[1]-complete (membership: reduction to Short Nondeter-
ministic Turing Machine Computation [52, 53]; hardness:
reduction from Independent Set [78])
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k-Perfect Matching

Instance: A graph G = (V,E); a positive integer k.

Question: Does G have at least (or exactly) k perfect matchings?

Parameter: k

FPT (solvable in time O(k · |E|) [151])

Note: For weighted graphs, finding the best k matchings is FPT by, for
instance, Chegireddy and Hamacher [58].

Perfect Phylogeny

Instance: A set C = {1, . . . ,m} of characters; for each c ∈ C, a set Ac =
〈1, . . . , rc〉 of states; a set S of n species s ∈ A1 × . . .×Am.

Question: Is there a tree T with the properties: (i) S ⊆ V (T ) ⊆ A1×. . .×Am

(ii) every leaf in T is in S (iii) for each c ∈ C and each j ∈ Ac, the set of
vectors v ∈ V (T ) such that vc = j induces a subtree of T ?

Parameter: r = maxc∈C rc

FPT (O
(
23r(nm3 + m4)

)
algorithm [7])

Parameter: r = maxc∈C rc, m

FPT (O((r − n/m)mrnm) algorithm [8])

Note: In the Compendium in [81], the meaning of r is not specified, and
maxc∈C rc is defined to be m. To be checked. This problem is also known
as Triangulating Colored Graphs.

Permanent Lower Bound

Instance: A binary matrix M ; a positive integer k.

Question: Does the permanent of M exceed k?

Parameter: k

FPT (equivalent to Bipartite Matching Cardinality [151])

Permutation Group Factorization

Instance: A set A ⊆ Sn of permutations of n objects; a permutation x ∈ Sn;
a positive integer k.
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Question: Does x have a factorization of length k over A?

Parameter: k

W[1]-hard, in W[P] (membership: direct proof [48]; hardness:
reduction from Perfect Code [48])

Planar Annotated Dominating Set

Instance: A planar black and white graph G = (B ∪W,E); a positive inte-
ger k.

Question: Is there a set of k vertices V ′ ⊆ B ∪W with the property that for
every vertex v ∈ B there is a vertex v′ ∈ N [v] ∩ V ′?

Parameter: k

FPT (Alber, Fan, Fellows, Fernau, Niedermeier, Rosamond, and
Stege O

(
8k · |G|

)
algorithm [11])

Note: See also Planar Dominating Set.

Planar Clique

Instance: A planar graph G = (V,E); a positive integer k.

Question: Is there a set V ′ ⊆ V of cardinality k such that ∀u, v ∈ V ′,
(u, v) ∈ E?

Parameter: k

FPT (trivial for k ≥ 5 due to Kuratowski’s Theorem [71])

Note: See also Clique.

Planar Connected Dominating Set

Instance: A planar graph G = (V,E); a positive integer k.

Question: Is there a subset D ⊆ V with |D| ≤ k such that D is both a
connected set and a dominating set?

Parameter: k

FPT ([118])

Planar Digraph Kernel

Instance: A planar digraph D = (V,A); a positive integer k.
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Question: Does there exist a kernel in D of size at most k? A kernel is a
set of nodes S such that S is independent and for every vertex x ∈ V \ S,
there is y ∈ S such that xy ∈ A.

Parameter: k

FPT (by a O
(
|V | 219.1

√
k + |V |4

)
algorithm in [139]; [139] in-

cludes also a O
(
|V |2 + 219.1

√
kk9

)
algorithm)

Note: See also Digraph Kernel.

Planar Directed Disjoint Paths

Instance: A directed planar graph G = (V,A); k pairs 〈r1, s1〉, . . . , 〈rk, sk〉.

Question: Does G have k vertex-disjoint paths P1, . . . , Pk with Pi running
from ri to si?

Parameter: k

Open (reported in [81])

Planar Dominating Set

Instance: A planar graph G = (V,E); a positive integer k.

Question: Is there a set of k vertices V ′ ⊆ V with the property that every
vertex of G either belongs to V ′ or has neighbor in V ′?

Parameter: k

FPT (from a O
(
8k k + n3

)
algorithm [11], where n = |V |; im-

proved to O
(

2O(
√

k)n
)

algorithm [9, 12, 13, 11]; the current best

algorithms have running time O
(

216.4715
√

k + n3
)

[153, 118] and

O
(

215.13
√

kn
)

[126]; it does not have a O
(

2o(
√

k)poly(n)
)

algo-
rithm unless all MAXSNP-complete problems can be solved in
time O

(
2o(k)poly(n)

)
[49])

Note: See also Dominating Set. Previously claimed to be in FPT by a
flawed O

(
11kn

)
algorithm [81]. Also [10] describes a O

(
2O(

√
k)n

)
algorithm,

but the constants of the time complexity are wrong.
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Planar Domination Improvement Number

Instance: A planar graph G = (V,E); a positive integer k.

Question: Is there a planar graph G′ with G ⊆ G′, such that G′ has a k-
element dominating set?

Parameter: k

FPT (Dejter and Fellows’ application of the Robertson-Seymour
Theorem [70])

Planar Embedding Face Cover

Instance: A graph G = (V,E); a positive integer k.

Question: Can G be embedded in the plane so that there are k faces that
cover all vertices?

Parameter: k

FPT (solvable in O(f(k) · n) time [20])

Note: Is this problem equivalent to Face Cover?

Planar Feedback Vertex Set

Instance: A planar graph G = (V,E); a positive integer k.

Question: Is there a set U of at most k vertices of G such that each cycle of
G passes through some vertex of U?

Parameter: k

FPT (O∗(4.5414k + n2
)

algorithm [118])

Note: See also Feedback Vertex Set.

Planar Independet Dominating Set

Instance: A planar graph G = (V,E); a positive integer k.

Question: Is there an independent dominating set D ⊆ V with |D| ≤ k?

Parameter: k

FPT (original proof in [79]; O∗(5.1623k
)

algorithm in [118])

Note: See also Independent Dominating Set.
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Planar Independent Set

Instance: A planar graph G = (V,E); a positive integer k.

Question: Is there a set V ′ ⊆ V of cardinality k such that ∀u, v ∈ V ′,
(u, v) 6∈ E?

Parameter: k

FPT (Lipton and Tarjan approximation algorithm [161, 162];
it does not have a O

(
2o(

√
k)poly(n)

)
algorithm (n = |V |) un-

less 3-SAT ∈ DTIME(2o(n)) [49]; also solvable by means of
“greedy kernelization” [118], or by computing a four-color map
of the graph, which yields a problem kernel of size 4k − 4 [118]
that, combined with a general algorithm having time complex-
ity O∗(2|V |/4

)
[194, 195], yields a parameterized algorithm with

running time in O∗(2k
)
; the best current algorithm is treewidth-

based and has running time in O
(

24
√

3kn
)

[118])

Note: See also Independent Set.

Planar Maximum Minimal Dominating Set

Instance: A planar graph G = (V,E); a positive integer k.

Question: Does there exist a minimal dominating set of cardinality ≥ k?

Parameter: k

FPT (by a greedy reduction to a problem kernel of size 4k − 4
[118])

Planar Multiway Cut

Instance: An edge-weighted planar graph G = (V,E); a set of terminals
{x1, . . . , xk} ⊆ V ; a positive integer M .

Question: Is there a set of edges of total weight at most M whose removal
disconnects each terminal from all the others?

Parameter: k

Open (reported in [65, 81])
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Planar Red-Blue Dominating Set

Instance: A planar graph G = (V,E) with V partitioned in Vred ∪ Vblue; a
positive integer k.

Question: Is there a subset D ⊆ Vred with |D| ≤ k and Vblue ⊆ N(D) (that
is, ∀ v ∈ Vblue, ∃w ∈ D such that (v, w) ∈ E)?

Parameter: k

FPT (by a reduction to Annotated Face Cover [118]; current
best algorithm has running time in O

(
224.551

√
k n

)
[118])

Note: See also Red-Blue Dominating Set.

Planar Roman Domination

Instance: A planar graph G = (V,E); a positive integer k.

Question: Is there a Roman domination function R such that
∑

v∈V R(v) ≤
k? A Roman domination of G is a function R : V → {0, 1, 2} such that
∀v ∈ V , if R(v) = 0 then there exists x ∈ N(v) such that R(x) = 2.

Parameter: k

FPT (by a O
(

3.3723k k + |V |3
)

algorithm in [118]; it can im-

proved to a O∗
(

222.165
√

k
)

algorithm [118, 11])

Note: See also Roman Domination.

Planar Vertex Cover

Instance: A planar graph G = (V,E); a positive integer k.

Question: Does G have a vertex cover of size at most k? A vertex cover is
a subset V ′ ⊆ V such that ∀ (v, w) ∈ E, v ∈ V ′ or w ∈ V ′.

Parameter: k

FPT (O
(

213.0639
√

k + kn
)

algorithm in [14]; also, O∗
(

22
√

6k
)

al-

gorithm in [118]; it does not have a O∗
(

2o(
√

k)
)

algorithm unless

3-SAT ∈ DTIME(2o(n)) [49])

Note: See also Vertex Cover.
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Planar Weighted t-Normalized Satisfiability

Instance: A planar t-normalized boolean expression X; a positive integer k.

Question: Does X have a satisfying truth assignment of weight k?

Parameter: k

Open (reported in [81])

Note: A boolean expression is t-normalized if it is of the form product-of-
sums-of-products . . . of literals with t alternations. Since a 2-normalized
boolean expression is in conjunctive normal form, for t = 2 the problem
coincides with Weighted CNF Satisfiability.

Polychrome Matching

Instance: An edge-colored graph G with r colors.

Question: Is there a partial matching in G consisting of r edges, with one
edge of each color?

Parameter: r

FPT (by the perfect hashing method [81, Exercise 8.3.3])

Polymatroid Recognition

Instance: A k-polymatroid M ; a positive integer k.

Question: Is M hypergraphic?

Parameter: k

Open (reported in [81])

Note: See [209] for definitions.

Polynomial Product Identity

Instance: Two sets of k multivariate polynomials pi and qi, for i = 1, . . . , k.

Question: Does the identity
∏k

i=1 pi =
∏k

i=1 qi hold?

Parameter: k

Open (reported in [81])
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Polynomially Smooth Number

Instance: An n-bit positive integer N ; a positive integer k.

Question: Is N nk-smooth, i.e., is every prime divisor of N bounded by nk?

Parameter: k

randomized FPT ([108, 107])

Note: The notion of nk-smoothness of n-digit numbers arises naturally in
the study of polynomial-time complexity. For example, the concept plays a
central role in the proof that primality is in UP ∩ co-UP.

Positive Weighted Completion Of An Ordering

Instance: A digraph P = (V,A) whose arc relation complies with the axioms
of a partial order; a cost function κ mapping A(D([U(P )]c)) into the positive
integers (by setting κ to zero for arcs in A(D(U(P ))) we can interpret the
domain of κ as V (P )× V (P )); a positive integer k.

Question: Is there a selection A′ of arcs from A(D([U(P )c])) such that the
transitive closure (A′∪A(P ))+ is a linear order and

∑
a∈(A′∪A(P ))+ κ(a) ≤ k?

Parameter: k

FPT (O
(
1.5175k + kn2

)
algorithm in [93, 118])

Note: D(G) denotes the digraph obtained from an undirected graph G by
replacing every edge (u, v) by the two arcs (u, v) and (v, u). U(G) denotes
the undirected graph obtained from a digraph G by putting an edge (u, v)
whenever (u, v) ∈ A(G) or (v, u) ∈ A(G). The problem is NP-complete by
a reduction from One-Sided Crossing Minimization [96].

Power Dominating Set For Almost Trees

Instance: A graph G = (V,E) that is a tree with k edges added; a nonneg-
ative integer k.

Question: Does G have a power dominating set of size at most k? A subset
of vertices M ⊆ V is a power dominating set if placing a monitoring device
(PMU) in every v ∈ M causes all vertices in V to be observed.

Parameter: k

FPT (O
(
|V | · 24k log k

)
algorithm in [137])
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Note: The rules for observation are the following: (1) A PMU in a vertex v
observes v and all incident edges and neighbors of v; (2) any vertex that is
incident to an observed edge is observed; (3) any edge joining two observed
vertices is observed; (4) if a vertex is incident to a total of i > 1 edges and if
i−1 of these edges are observed, then all i edges are observed. The problem
is NP-complete on general graphs, but it can be solved in linear time on
trees [146].

Precedence Constrained Processor Scheduling

Instance: A set T of unit-length tasks; a partial order ≺ on T ; a positive
integer deadline D; a number of processors k.

Question: Is there a map f : T → {1, . . . , D} such that for all t, t′ ∈ T , t ≺ t′

implies f(t) < f(t′), and for all i, 1 ≤ i ≤ D,
∣∣f−1(i)

∣∣ ≤ k?

Parameter: k

W[2]-hard (reduction from Dominating Set [31])

Note: The general version of this problem is not known to be either NP-
complete or in P. [81, Appendix A] cites [33] as a reference for this param-
eterized problem, but it looks like a mistake.

Profit Vertex Cover

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a subset C ⊆ V with |E| − |E(G[V \ C])| − |C| ≥ k? The
profit of the vertex cover is the gain of the cover, that is, the size of the edge
set that is covered minus the size of the cover.

Parameter: k

FPT (O
(
k |V |+ 1.151k

)
algorithm reported in [203])

Proper Intervalizing Colored Graphs

Instance: A vertex-colored graph G = (V,E); a positive integer k.

Question: Is there a G′ ⊃ G which is a proper interval graph and has clique
size at most k, and no edge in G′ connects two vertices in G with the same
color?

Parameter: k
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W[t]-hard for all t ([154])

Note: See also Restricted Completion To Proper Interval Graph
With Bounded Clique Size.

Pure Implicational Satisfiability Of Fixed F-Depth

Instance: A pure implicational formula X with at most two instances of
each proposition and at most k occurrences of the propositional constant f
(where f is always false).

Question: Is X satisfiable?

Parameter: k

FPT (solvable in O
(
kkn2

)
time [128])

Quantified Antimonotone Circuit Satisfiability

Instance: An integer r; a sequence s1, . . . , sr of pairwise disjoint sets of
boolean variables; a decision circuit X with the variables s1∪. . . sr as negated
inputs and no other inverters; integers k1, . . . , kr.

Question: Is it the case that there exists a size k1 subset t1 of s1 such that
for every size k2 subset t2 of s2, there exists a size k3 subset t3 of s3 such
that . . . (alternating qualifiers) such that, when the inputs in t1 ∪ . . . tr are
set to 1 and all other inputs are set to 0, circuit X outputs 1?

Parameter: r, k1, . . . , kr

AW[P]-complete (equivalent to Quantified Circuit
Satisfiability [2])

Quantified Boolean Antimonotone Formula Satisfiability

Instance: An integer r; a sequence s1, . . . , sr of pairwise disjoint sets of
boolean variables; a boolean formula X involving the variables s1 ∪ . . . sr

in which all variables are negated and no other negation is used; integers
k1, . . . , kr.

Question: Is it the case that there exists a size k1 subset t1 of s1 such that
for every size k2 subset t2 of s2, there exists a size k3 subset t3 of s3 such
that . . . (alternating qualifiers) such that, when the variables in t1 ∪ . . . tr
are made true and all other variables are made false, formula X is true?
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Parameter: r, k1, . . . , kr

AW[SAT]-complete (equivalent to Quantified Boolean For-
mula Satisfiability [2, 81])

Quantified Boolean Formula Satisfiability

Instance: An integer r; a sequence s1, . . . , sr of pairwise disjoint sets of
boolean variables; a boolean formula X involving the variables s1 ∪ . . . sr;
integers k1, . . . , kr.

Question: Is it the case that there exists a size k1 subset t1 of s1 such that
for every size k2 subset t2 of s2, there exists a size k3 subset t3 of s3 such
that . . . (alternating qualifiers) such that, when the variables in t1 ∪ . . . tr
are made true and all other variables are made false, formula X is true?

Parameter: r, k1, . . . , kr

AW[SAT]-complete (kernel problem for the class AW[SAT])

Quantified Boolean t-Normalized Formula Satisfiability

Instance: An integer r; a sequence s1, . . . , sr of pairwise disjoint sets of
boolean variables; a boolean formula X involving the variables s1 ∪ . . . sr

that consists of t alternating layers of conjunctions and disjunctions with
negations applied only to variables (t is a fixed constant); integers k1, . . . , kr.

Question: Is it the case that there exists a size k1 subset t1 of s1 such that
for every size k2 subset t2 of s2, there exists a size k3 subset t3 of s3 such
that . . . (alternating qualifiers) such that, when the variables in t1 ∪ . . . tr
are made true and all other variables are made false, formula X is true?

Parameter: r, k1, . . . , kr

AW[∗]-complete (kernel problem for the class AW[t]; result fol-
lows from Trade-off Theorems AW[1] = AW[2] = · · · = AW[∗]
[1, 2, 85, 86, 81])

Note: See also Unitary Quantified Boolean t-Normalized Formula
Satisfiability.

Quantified Circuit Satisfiability

Instance: An integer r; a sequence s1, . . . , sr of pairwise disjoint sets of
boolean variables; a decision circuit X with the variables s1∪. . . sr as inputs;
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integers k1, . . . , kr.

Question: Is it the case that there exists a size k1 subset t1 of s1 such that
for every size k2 subset t2 of s2, there exists a size k3 subset t3 of s3 such
that . . . (alternating qualifiers) such that, when the inputs in t1 ∪ . . . tr are
set to 1 and all other inputs are set to 0, circuit X outputs 1?

Parameter: r, k1, . . . , kr

AW[P]-complete (kernel problem for the class AW[P])

Quantified Monotone Circuit Satisfiability

Instance: An integer r; a sequence s1, . . . , sr of pairwise disjoint sets of
boolean variables; a decision circuit X with the variables s1∪ . . . sr as inputs
and no inverters; integers k1, . . . , kr.

Question: Is it the case that there exists a size k1 subset t1 of s1 such that
for every size k2 subset t2 of s2, there exists a size k3 subset t3 of s3 such
that . . . (alternating qualifiers) such that, when the inputs in t1 ∪ . . . tr are
set to 1 and all other inputs are set to 0, circuit X outputs 1?

Parameter: r, k1, . . . , kr

AW[P]-complete (membership: reduction to Quantified Cir-
cuit Satisfiability [2]; hardness: reduction from Minimum
Axiom Set [83, 82])

Quantified Boolean Monotone Formula Satisfiability

Instance: An integer r; a sequence s1, . . . , sr of pairwise disjoint sets of
boolean variables; a boolean monotone formula X involving the variables
s1 ∪ . . . sr; integers k1, . . . , kr.

Question: Is it the case that there exists a size k1 subset t1 of s1 such that
for every size k2 subset t2 of s2, there exists a size k3 subset t3 of s3 such
that . . . (alternating qualifiers) such that, when the variables in t1 ∪ . . . tr
are made true and all other variables are made false, formula X is true?

Parameter: r, k1, . . . , kr

AW[SAT]-complete (equivalent to Quantified Boolean For-
mula Satisfiability [2, 81])
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Reachibility Distance For Vector Addition Systems

Instance: A set T of m integer-valued vectors T = {xi = (xi
1, . . . , x

i
n) :

1 ≤ i ≤ m}; a non-negative starting vector s = (s1, . . . , sn); a non-negative
target vector t = (t1, . . . , tn); a positive integer k.

Question: Is there a choice of k indices i1, . . . , ik, 1 ≤ ij ≤ m for j = 1, . . . , k

such that t = s +
∑k

j=1 xij and such that every intermediate sum is non-

negative in each component, that is, sr +
∑q

j=1 x
ij
r ≥ 0 for q = 1, . . . , k and

r = 1, . . . , n?

Parameter: k

W[1]-hard (reduction from Clique [83, 82])

Note: Also known as Reachibility Distance for Petri Nets.

Real Weighted Vertex Cover

Instance: A graph G = (V,E); a weight function ω : V → [1,∞); k ∈ R+.

Question: Is there a subset of vertices V ′ ⊆ V of weight at most k such that
every edge of G has at least one endpoint in V ′?

Parameter: k

FPT (solvable in time O
(
1.3954k + kn

)
[174])

Note: The general problem having an arbitrary real function ω : V → R+

is NP-complete for any fixed k, thus it cannot be fixed-parameter tractable
unless P = NP [172]. See also Vertex Cover and Integer Weighted
Vertex Cover.

Rectilinear Picture Compression

Instance: A boolean n× n matrix; a positive integer k.

Question: Are there k rectangles that cover all the 1’s?

Parameter: k

FPT (by the reduction to problem kernel method [81, Exer-
cise 3.2.6])

Red-Blue Dominating Set

Instance: A graph G = (V,E) with V partitioned in Vred ∪ Vblue; a positive
integer k.
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Question: Is there a subset D ⊆ Vred with |D| ≤ k and Vblue ⊆ N(D) (that
is, ∀ v ∈ Vblue, ∃w ∈ D such that (v, w) ∈ E)?

Parameter: k

W[2]-complete (equivalent to Hitting Set [118])

Note: See also Planar Red-Blue Dominating Set.

Restricted Alternating Hitting Set

Instance: A collection C of subsets of a set B with |c| ≤ k1 for all c ∈ C; an
integer k2.

Question: Does player one have a forced win in no more than k2 moves in
the following game played on C and B? Players alternate choosing a new
element of B until, for each c ∈ C, some member of c has been chosen. The
player whoose choice causes this to happen loses.

Parameter: k1, k2

FPT (solvable in O(f(k1, k2) · n) time [2])

Restricted Completion To Proper Interval Graph With Bounded
Clique Size

Instance: A graph G = (V,E); a set E′ ⊆ V × V −E of “prohibited” edges;
a positive integer k.

Question: Is there a G′ ⊃ G which is a proper interval graph and has clique
size at most k, and G′ has no edges from E′?

Parameter: k

W[t]-hard for all t ([154, 155]; it remains W[t]-hard even when
E′ = ∅ [154])

Note: See Proper Intervalizing Colored Graphs for a restricted ver-
sion of this problem.

Restricted Valence Isomorphism

Instance: Two graphs G = (V,E) and H = (V ′, E′); a positive integer k.

Question: Are G and H isomorphic graphs such that the valencies of the
vertices of both G and H are bounded by k?
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Parameter: k

Open (reported in [81]; if this problem is W[1]-hard, the classic
Graph Isomorphism problem is not in P unless FPT = W[1].)

Roman Domination

Instance: A planar graph G = (V,E); a positive integer k.

Question: Is there a Roman domination function R such that
∑

v∈V R(v) ≤
k? A Roman domination of G is a function R : V → {0, 1, 2} such that
∀v ∈ V , if R(v) = 0 then there exists x ∈ N(v) such that R(x) = 2.

Parameter: k

W[2]-complete (membership: by a reduction to Short Multi-
Tape Nondeterministic Turing Machine Computation
[118]; hardness: by a reduction from Red-Blue Dominating
Set restricted to bipartite graphs [118])

Parameter: treewidth of G

FPT (O
(
5tw(G) |V |

)
algorithm in [118])

Note: See also Planar Roman Domination.

Rush Hour Puzzle

Instance: A tuple (C,S, p0, d, Z), where C is a finite set (representing the
cars), S : C → 2R2

defines the car shapes (always axes-parallel open rect-
angles contained in the first quadrant of the plane and with the origin
as a corner), p0 : C → R2 defines the initial car positions, d : C →
{(1, 0), (0, 1), (0, 0)} defines the car directional vectors, and Z : C → 2R

defines the set of the Rush Hour goals; a positive integer m.

Question: Is there a sequence of m + 1 configurations u : C → R that are
legal (that is, (p0(c) + u(c)d(c) + S(c))∩ (p0(c′) + u(c′)d(c′) + S(c′)) = ∅ for
all c, c′ ∈ C with c 6= c′) and such that the first configuration consists of
the cars in the initial position, the last configuration consists of cars in goal
positions, and each pair of successive configurations is connected via a legal
move, that is, via an operation that adds to (or subtracts from) the position
of a car a multiple of its directional vector?

Parameter: |C|
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FPT (exhaustive O
(
(2k3)2kp(n)

)
algorithm (where p(n) is a

polynomial and the n× n square initially includes all cars) that
generates and analyzes the search space of discrete configurations
[119, 118])

Parameter: m

FPT (2O(m2·3m)p(n) algorithm in [119, 118])

Note: The classical version of this problem is PSPACE-complete [121].

Shadow Independent Set

Instance: A forest Fk(n) = {Ti : 1 ≤ i ≤ k} with n nodes consisting of k trees
Ti rooted at ri and with leaf sets Li; a partial map σ :

⋃
i Li →

⋃
i V (Ti)\{ri}

such that σ(Li) ∩ V (Ti) = ∅ and domain(σ) ∩ Li 6= ∅ (1 ≤ i ≤ k).

Question: Is there a set S = {xi ∈ Li : 1 ≤ i ≤ k} containing exactly one
leaf of each tree such that for every xi, xj ∈ S, xj 6∈ sσ(xi)? sσ(xi) is the
shadow of xj and includes all leaves of the subtree rooted at σ(xi).

Parameter: k

FPT (O
(
n2kk

)
algorithm in [128]; O

(
n33k

)
dynamic program-

ming algorithm in [148])

Note: Equivalent to the falsifiability problem for pure implicational Boolean
formulas over n variables with k occurrences of the constant false [147].

Search Number

Instance: A graph G = (V,E); a positive integer k.

Question: Are k searchers sufficient to ensure the capture of a fugitive who
is free to move with arbitrary speed along the edges of G?

Parameter: k

FPT ([111, 115]; solvable in O(f(k) · n) time [23])

Semigroup Embedding

Instance: A semigroup (S, ·); a semigroup (H,×).

Question: Can H be embedded into S?

Parameter: H
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W[1]-complete (membership: direct proof [81, Exercise 10.0.3];
hardness: reduction from Clique [38, 184], also in [81, Exer-
cise 10.0.3])

Semilattice Embedding

Instance: A semilattice L; a semilattice H.

Question: Can H be embedded into L?

Parameter: H

W[1]-complete (membership: direct proof [81, Exercise 10.0.3];
hardness: reduction from Clique [38, 184], also in [81, Exer-
cise 10.0.3])

Separating Into Components

Instance: A graph G = (V,E); integers k and `.

Question: Is there a set S ⊆ V of size k such that G \ S has at least `
connected components?

Parameter: k, `

W[1]-hard (reduction from Clique [167])

Note: See also Separating Connected Vertices and Separating Vertices.

Separating Connected Vertices

Instance: A graph G = (V,E); integers k and `.

Question: Is there a partition V = X ∪S ∪Y such that G[X] is a connected
subgraph of G, |X| = `, |S| ≤ k and there is no edge between X and Y ?

Parameter: k

W[1]-hard (reduction from Clique [167])

Parameter: `

W[1]-hard (reduction from Clique [167])

Parameter: k, `

FPT (algorithm based on perfect hash functions in [167])

Note: See also Separating Into Components and Separating Vertices.
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Separating Vertices

Instance: A graph G = (V,E); integers k and `.

Question: Is there a partition V = X ∪ S ∪ Y such that |X| = `, |S| ≤ k
and there is no edge between X and Y ?

Parameter: k, `

W[1]-hard (reduction from Clique [167])

Parameter: k, `, maxv∈V deg(v)

FPT (algorithm based on perfect hash functions in [167])

Note: See also Separating Into Components and Separating Con-
nected Vertices.

Set Basis

Instance: A collection C of subsets of a finite set S; a positive integer k.

Question: Is there a collection B of subsets of S with |B| = k such that, for
every set A ∈ C, there is a subcollection of B whose union is exactly A?

Parameter: k

FPT (by the reduction to problem kernel method [81, Exer-
cise 3.2.3])

Set Cover

Instance: A finite family of sets S = S1, . . . , Sn; a positive integer k.

Question: Is there a subset R ⊆ S with |R| ≤ k whose union is all elements
in the union of S?

Parameter: k

W[2]-complete (hardness: reduction from Dominating Set
[181, 210])

Note: Often in the literature the name “Set Cover” denotes the Hitting
Set problem. The general problem is NP-complete even if each element
occurs in at most two sets of the family S [178].

Set Packing

Instance: A finite family of sets S = S1, . . . , Sn; a positive integer k.
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Question: Does S contain a subset R of k mutually disjoint sets?

Parameter: k

W[1]-complete (hardness: reduction from Independent Set
[16, 210])

Set Splitting

Instance: A collection F of subsets of a finite set X; a positive integer k.

Question: Is there a subfamily F ′ ⊆ F with |F| ≥ k and a partition of X
into disjoint subsets X0 and X1 such that for every S ∈ F ′, S ∩X0 6= ∅ and
S ∩X1 6= ∅?

Parameter: k

FPT (tractability results in [67, 68]; current best algorithm is
obtained by a reduction to a problem kernel of size 2k, which
yields a O∗(2.6494k

)
algorithm [163, 164])

Note: Equivalent to Bipartite Colorful Neighborhood [163].

Short Cheap Tour

Instance: A graph G = (V,E); a weight function w : E → Z; positive
integers S and k.

Question: Is there a tour through at least k nodes of G of cost at most S?

Parameter: k

FPT ([183])

Note: See also Exact Cheap Tour.

Short Circuit Satisfiability

Instance: A boolean circuit C with n gates, at most k log n inputs, and one
output; a positive integer k.

Question: Is there a setting of the inputs that cause C to output 1?

Parameter: k

W[P]-complete (hardness: reduction from Weighted Circuit
Satisfiability [2, 3])
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Short Context-Free Derivation

Instance: A context-free grammar G = (N, Σ, Π, S) where N is a finite set of
“nonterminal symbols”, Σ is a finite set of “terminal symbols”, Π is a finite
set of “production rules” of the form (A → β) with A ∈ N and β ∈ (N∪Σ)∗,
and S ∈ N is the “start symbol”; a word x ∈ Σ∗; a positive integer k.

Question: Is there a G-derivation of x of length at most k? That is, is
there a sequence of words x0, . . . , xk with xi ∈ (N ∪ Σ)∗ for i = 0, . . . , k,
that satisfies the requirements: (1) x0 = S, (2) xk = x, and (3) for each
i = 1, . . . , k there is a production rule (B → γ) ∈ Π such that xi−1 = αBδ
and xi = αγδ?

Parameter: k

FPT ([81, Exercise 11.0.1])

Note: See also the problems Short Context-Sensitive Derivation and
Short Grammar Derivation.

Short Context-Sensitive Derivation

Instance: A context-sensitive grammar G = (N, Σ, Π, S) where N is a finite
set of “nonterminal symbols”, Σ is a finite set of “terminal symbols”, S ∈ N
is the “start symbol”, and Π is a finite set of “production rules” of the form
(α → β) with α, β ∈ (N ∪ Σ)∗, α, β 6= ε, and |α| ≤ |β|; a word x ∈ Σ∗; a
positive integer k.

Question: Is there a G-derivation of x of length at most k? That is, is there
a sequence of words x0, . . . , xk with xi ∈ (N ∪Σ)∗ for i = 0, . . . , k, that sat-
isfies the requirements: (1) x0 = S, (2) xk = x, and (3) for each i = 1, . . . , k
there is a production rule (β → γ) ∈ Π such that xi−1 = αβδ and xi = αγδ?

Parameter: k

W[1]-complete (membership: reduction to Short Nondeter-
ministic Turing Machine Computation [48]; hardness: re-
duction from Clique [83, 82])

Note: The general version of this problem is PSPACE-complete by a reduc-
tion from Linear Space Bounded Automaton Acceptance. See also
Short Context-Free Derivation and Short Grammar Derivation.

Short Deterministic Turing Machine Computation

Instance: A single-tape, single-head deterministic Turing machine M =
(Σ, Q, ∆), where Σ is an alphabet, Q is a set of internal states, and ∆
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is a set of transitions; a word x ∈ Σ∗; a positive integer k.

Question: Does M(x) reach the final accepting state in at most k steps?

Parameter: k

FPT (by simulating M with a Universal Turing Machine [50, 54])

Note: The general version of this problem is undecidable.

Short 3-Dimensional Matching

Instance: Set M ⊆ X × Y × Z where X, Y and Z are disjoint sets having
the same number of elements; a positive integer k.

Question: Does there exist a set M ′ ⊆ M such that |M ′| = k and for all
(x, y, z), (x′, y′, z′) ∈ M ′ with (x, y, z) 6= (x′, y′, z′), we have x 6= x′, y 6= y′

and z 6= z′?

Parameter: k

FPT ([81, Exercise 8.2.3])

Short Formula Satisfiability

Instance: A boolean formula ϕ of n variables; a list of at most k log n vari-
ables of ϕ; a positive integer k.

Question: Is there any setting of the distinguished variables that causes ϕ
to unravel?

Parameter: k

W[P]-complete (hardness: reduction from Short Circuit
Satisfiability [2])

Short Generalized Geography

Instance: A directed graph D = (V,A); a vertex v0 ∈ V ; a positive integer k.

Question: Does player one have a winning strategy in k moves for the fol-
lowing game? Players alternately choose a new arc from A. The first arc
chosen must have its tail at v0, and each subsequently chosen arc must have
its tail at the vertex that was the head of the previous arc. The first player
unable to choose a new arc loses. Player one plays first.

Parameter: k
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AW[∗]-complete (membership: direct proof [2]; hardness: re-
duction from Unitary Quantified Boolean t-Normalized
Formula Satisfiability [1, 2])

Short Generalized Hex

Instance: A graph G = (V,E); two distinguished vertices v1, v2 ∈ V ; a
positive integer k.

Question: Does player one have a winning strategy of at most k moves in
the following game? Player one plays with white pebbles and player two
with black ones. Pebbles are placed on nondistinguished vertices alternately
by player one, then player two. Player one wins if he can construct a path
of white vertices from v1 to v2.

Parameter: k

Open (reported in [81]; candidate for AW[∗]-completeness)

Short Grammar Derivation

Instance: A context-sensitive grammar G = (N, Σ, Π, S) where N is a finite
set of “nonterminal symbols”, Σ is a finite set of “terminal symbols”, Π is a
finite set of “production rules” of the form (α → β) with α, β ∈ (N ∪ Σ)∗,
and S ∈ N is the “start symbol”; a word x ∈ Σ∗; a positive integer k.

Question: Is there a G-derivation of x of length at most k? That is, is there
a sequence of words x0, . . . , xk with xi ∈ (N ∪Σ)∗ for i = 0, . . . , k, that sat-
isfies the requirements: (1) x0 = S, (2) xk = x, and (3) for each i = 1, . . . , k
there is a production rule (β → γ) ∈ Π such that xi−1 = αβδ and xi = αγδ?

Parameter: k

W[1]-complete (membership: reduction to Short Nondeter-
ministic Turing Machine Computation [48]; hardness: re-
duction from Clique [48])

Note: The general version of this problem is PSPACE-complete by a re-
duction from Linear Space Bounded Automaton Acceptance. See
also Short Context-Free Derivation and Short Context-Sensitive
Derivation.

Short Multi-Head Nondeterministic Turing Machine Computa-
tion

Instance: A nondeterministic Turing machine M = (Σ, Q, ∆) with t tapes
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(t ≥ 2) and h heads on each tape (h ≥ 2), where Σ is an alphabet, Q is a
set of internal states, and ∆ is a set of transitions; a word x ∈ Σ∗; a positive
integer k.

Question: Is there a computation of M on input x that reaches the final
accepting state in at most k steps?

Parameter: k

W[2]-hard (trivial reduction from Short Multi-Tape Non-
deterministic Turing Machine Computation [50, 54]; it
remains W[2]-hard if M has empty input, one non-final inter-
nal state, and one tape [50, 54]; if M is total, that is, ∆ in-
cludes at least one transition for every possible combination
of scanned symbols and internal states, the problem is W[1]-
complete [50, 54])

Parameter: k, t, h

W[1]-complete (equivalent to Short Nondeterministic Tur-
ing Machine Computation [50, 54]; it remains W[1]-complete
if M has empty input, one tape, two heads, and one non-final
internal state [50, 54])

Parameter: k, t, h, |Σ|
FPT (by exhaustively checking all global configurations of M(x)
[50, 54])

Note: The general version of this problem is undecidable.

Short Multi-Tape Nondeterministic Turing Machine Computa-
tion

Instance: A single-head nondeterministic Turing machine M = (Σ, Q, ∆)
with t tapes (t ≥ 2), where Σ is an alphabet, Q is a set of internal states,
and ∆ is a set of transitions; a word x ∈ Σ∗; a positive integer k.

Question: Is there a computation of M on input x that reaches the final
accepting state in at most k steps?

Parameter: k
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W[2]-complete (membership: direct proof [53]; hardness: reduc-
tion from Dominating Set [50, 54]; it remains W[2]-complete
if M has empty input, one non-final internal state, and two non-
blank symbols [50, 54]; if M is total, that is, ∆ includes at least
one transition for every possible combination of scanned symbols
and internal states, the problem is W[1]-complete [50, 54])

Parameter: k, t

W[1]-complete (equivalent to Short Nondeterministic Tur-
ing Machine Computation [50, 54]; it remains W[1]-complete
if M has just two writable tapes, one non-final internal state,
and empty input [50, 54])

Parameter: k, t, |Σ|
FPT (by exhaustively checking all global configurations of M(x)
[50, 54])

Note: The general version of this problem is undecidable.

Short Node Kayles

Instance: A graph G = (V,E); a positive integer k.

Question: Does player one have a winning strategy in k moves for the fol-
lowing game? Players pebble a vertex not adjacent to any pebbled vertex.
The first player with no play loses. Player one plays first.

Parameter: k

AW[∗]-complete (membership: direct proof [2] and [81, Exer-
cise 14.0.2]; hardness: reduction from Unitary Quantified
Boolean t-Normalized Formula Satisfiability [2] and [81,
Exercise 14.0.2])

Short Nondeterministic Turing Machine Computation

Instance: A single-tape, single-head nondeterministic Turing machine M =
(Σ, Q, ∆), where Σ is an alphabet, Q is a set of internal states, and ∆ is a
set of transitions; a word x ∈ Σ∗; a positive integer k.

Question: Is there a computation of M on input x that reaches the final
accepting state in at most k s teps?

Parameter: k
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W[1]-complete (membership: direct proof [48, 83, 82]; hardness:
reduction from Clique [48, 83, 82]; it remains W[1]-complete
if the input word x is the null string; it belongs to FPT if the
maximum number of nondeterministic transition possibilities out
of an internal state is fixed.)

Parameter: k, |Σ|
FPT (by exhaustively checking all global configurations of M(x)
[50, 54])

Parameter: k, |Q|
FPT (by reducing to the same problem parameterized by k and
|Σ| [50, 54])

Note: The general version of this problem is undecidable.

Short Phonological Segment Decoding

Instance: A simplified segmental grammar s = (F, S,D,R, cp, C) such that
the number of mutually exclusive rule sets in R, |Rm.e.|, is at most k; a
string s ∈ S+.

Question: Is there a string u ∈ D such that g(u) = s?

Parameter: k

W[t]-hard for all t, in W[P] (membership: direct proof ?
[77]; hardness: reduction from Weighted t-Normalized
Satisfiability [77]; the same proofs also implies the W[t]-
hardness and membership in W[P] of Short Phonological
Segment Encoding)

Note: See [77] and [191] for the definition of simplified segmental grammar.

Short Post Correspondence

Instance: A Post system Π; a positive integer k.

Question: Is there a length k solution for Π?

Parameter: k

W[1]-complete (membership: reduction to Short Nondeter-
ministic Turing Machine Computation [48]; hardness: re-
duction from Short Grammar Derivation [48])

Note: The general version is undecidable.
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Short Semi-Thue Process

Instance: A semi-Thue process Π consisting of a finite alphabet A together
with a set of production rules g → g, where g ∈ A; words w, v ∈ A∗; a
positive integer k.

Question: Does w ⇒∗
Π v in no more than k steps?

Parameter: k

W[1]-complete (membership: reduction to Short Post
Correspondence [81]; hardness: reduction from Clique [81])

Note: The general version is undecidable.

Shortest Common Supersequence

Instance: An alphabet Σ; a set of strings {r1, . . . , rk} formed over alpha-
bet Σ; a positive integer λ.

Question: Does there exist a string s ∈ Σ∗ of length at most λ such that s is
a supersequence of each string ri, 1 ≤ i ≤ k? (A string s is a supersequence
of a string r if we can delete some characters in s such that the remaining
string is equal to r.)

Parameter: k, |Σ|

W[t]-hard for all t ([144, 143])

Parameter: λ

FPT (reported by [105])

Note: See also Fixed Alphabet Shortest Common Supersequence.

Shortest Vector

Instance: A basis X = {x1, x2, . . . , xn} ⊂ Zn for a lattice  L; a positive
integer k.

Question: Is there a non-zero vector x ∈  L such that ‖x‖2 ≤ k?

Parameter: k

Open (reported in [81])

Small Herbrand Model

Instance: A finite propositional logic program P ; a positive integer k.
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Question: Does there exist an Herbrand model M for P of size no more
than k?

Parameter: k

W[2]-complete ([51])

Note: The problem remains W[2]-complete if the Herbrand model is required
to be minimal, that is, every proper subset of M is not an Herbrand model
for P [51]. See also Small Stable Model.

Small Minimum Degree Four Subgraph

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a subgraph of G of minimum degree at least 4 and of
cardinality at most k?

Parameter: k

W[1]-complete ([210])

Small Prime Divisor

Instance: An n-bit positive integer N ; a positive integer k.

Question: Does N have a nontrivial divisor less than nk?

Parameter: k

randomized FPT ([108, 107])

Small Stable Model

Instance: A finite propositional logic program P ; a non-negative integer k.

Question: Does there exist a stable model for P of size no more than k?

Parameter: k

W[2]-complete (membership: reduction to Short Multi-Tape
Nondeterministic Turing Machine Computation [51];
hardness: reduction from Weighted CNF Satisfiability
[208])

Note: A model M of a logic program P is a stable model if M coincides with
the minimal Herbrand model M for the the logic program PM obtained
from P by deleting (i) each rule having a negative literal ¬v in its body
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with v ∈ M and (ii) all negative literals in the bodies of the remaining rules
[131]. See also Large Stable Model and Small Herbrand Model.

Spare Allocation

Instance: An n × m binary matrix A representing an erroneous chip, with
A[i, j] = 1 if and only if the chip is faulty at position [i, j]; positive integer
k1, k2.

Question: Is there a reconfiguration strategy—i.e., a description of which
rows and columns of A have to be replaced by spares—that repairs all faults
and uses at most k1 spare rows and at most k2 spare columns?

Parameter: k1, k2

FPT (equivalent to Constraint Bipartite Vertex Cover
[159])

Square Tiling

Instance: A set C of “colors”; a collection T ⊆ C4 of “tiles” (where 〈a, b, c, d〉
denotes a tile whose top, right, bottom, and left sides are colored a, b, c,
and d, respectively); a positive integer k.

Question: Is there a tiling of a k × k square using the tiles in T , i.e., an
assigment of a tile f(i, j) ∈ T to each ordered pair i, j, 1 ≤ i ≤ k, 1 ≤ j ≤ k,
such that (1) if f(i, j) = 〈a, b, c, d〉 and f(i+1, j) = 〈a′, b′, c′, d′〉, then a = c′,
and (2) if f(i, j) = 〈a, b, c, d〉 and f(i, j + 1) = 〈a′, b′, c′, d′〉, then b = d′?

Parameter: k

W[1]-complete (membership: reduction to Short Nondeter-
ministic Turing Machine Computation [81]; hardness: re-
duction from Clique [81])

s-Star Packing

Instance: A graph G = (V,E); a positive integer k.

Question: Are there k vertex disjoint instances of K1,s (s ≥ 3) in G?

Parameter: k

FPT (by a reduction to problem kernel of size k(s3+ks2+ks+1)
yielding a O∗(2O(k log k)

)
algorithm [186])

Note: See also 3-Path Packing, Triangle Packing, and Graph Packing.
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Steiner Tree

Instance: A graph G = (V,E); a set S of at most k vertices in V ; an
integer m.

Question: Is there a set of vertices T ⊆ V −S such that |T | ≤ m and G[S∪T ]
is connected?

Parameter: m

W[2]-complete (membership: reduction to Short Multi-Tape
Nondeterministic Turing Machine Computation [53];
hardness: reduction from Dominating Set [36])

Parameter: k

FPT ([90]; solvable in time O
(
3kn + 2kn2 + n3

)
by the Dreyfus-

Wagner algorithm [210])

Steiner Tree In HyperCubes

Instance: Binary sequences X1, . . . , Xk, where each Xi has length q; a posi-
tive integer M encoded in binary.

Question: Is there a subgraph S of the q-dimensional binary hypercube that
includes the vertices X1, . . . , Xk, such that S has at most M edges? Two
vertices are adjacent if and only if the corresponding vectors differ in a single
component.

Parameter: k

FPT (by the reduction to problem kernel method (H. T. Ware-
ham) [81, Exercise 3.2.11])

Subset Product

Instance: A set of integers X = {x1, . . . , xn}; integers a and m; a positive
integer k.

Question: Is there a subset X ′ ⊆ X of cardinality k such that the product
of the integers in X ′ is congruent to a mod m?

Parameter: k

W[1]-hard (reduction from Perfect Code [108, 109])
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Subset Sum

Instance: A set of integers X = {x1, . . . , xn}; an integer s; a positive inte-
ger k.

Question: Is there a subset X ′ ⊆ X of cardinality k such that the sum of
the integers in X ′ equals s?

Parameter: k

W[1]-hard, in W[P] (membership: [109]; hardness: reduction
from Perfect Code [78])

Theta Series

Instance: A basis X = {x1, . . . , xn} ⊂ Zn for a lattice  L; a positive integer k.

Question: Is there a vector x ∈  L such that ‖x‖2 = k?

Parameter: k

W[1]-hard (reduction from Perfect Code [89])

Note: See also Nearest Vector.

Threshold Starting Set

Instance: A directed graph D = (V,A); a positive integer k.

Question: Does G have a starting set of size k? A starting set is a set of
vertices V ′ ⊆ V with the property that if we begin with a pebble on each of
the vertices in V ′ and subsequently place pebbles on any vertex having at
least t incoming arcs from pebbled vertices, then eventually every vertex of
the graph is pebbled.

Parameter: k

W[P]-complete (hardness: reduction from Weighted Mono-
tone Circuit Satisfiability [2])

Note: t is a fixed constant?!

t-Threshold Stable Set

Instance: A directed graph G = (V,A); a positive integer k.

Question: Does G have a t-threshold stable set of size k? A t-threshold stable
set is a set of vertices V ′ ⊆ V such that for every vertex v of V − V ′, there
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are fewer than t vertices u ∈ V ′ with (u, v) ∈ A.

Parameter: k

W[1]-complete (hardness: reduction from Independent Set
[81])

Note: The problem is included in [81, Appendix A] with a reference to the
book itself, but I was not able to find other references to the problem in the
book.

Topological Bandwidth

Instance: A connected graph G = (V,E); a positive integer k.

Question: Is the topological bandwidth of G at most k? The topological
bandwidth of a graph G is the minimum bandwidth over all graphs obtainable
by subdividing the edges of G.

Parameter: k

W[t]-hard for all t (reduction from Bandwidth [33])

Topological Containment

Instance: Graphs G and H.

Question: Is H topologically contained in G?

Parameter: H

Open (reported in [81])

Tournament Dominating Set

Instance: A tournament G = (V,A), that is, a directed graph such that for
all x, y ∈ V , exactly one of (x, y) and (y, x) is in A; a positive integer k.

Question: Does G have a dominating set of cardinality at most k?

Parameter: k

W[2]-complete (membership is easy; hardness: reduction from
Dominating Set [79] [80] [81, Exercise 12.0.3])

Note: The general version of this problem is LOGSNP-complete.
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Tree-like Weighted Set Cover with Bounded Occurrence

Instance: A base set U ; a tree-like collection C = {c1, c2, . . . cm} of subsets
of U , where each element of U can be in at most d subsets for a fixed d ≥ 1;
a weight function w : C → R+; a positive integer q.

Question: Is there a subset C ′ ⊆ C having weight ≤ q that covers all ele-
ments in U , i.e., ∪c∈C′c = U?

Parameter: number of leaves of the subset tree T for C

FPT (O
(

2dk2 ·m2n
)

algorithm, where n = |U | and k denotes
the number of leaves of the subset tree [137])

Note: A collection C of subsets is tree-like if we can organize the subsets
in C in an unrooted tree T such that every subset one-to-one corresponds
to a node of T and, for each element u ∈ U , all nodes in T corresponding
to the subsets containing u induce a subtree of T . The general problem is
NP-complete for d ≥ 3 even if the underlying subset tree is a star [138]; it
can be solved in O

(
m2n

)
time if the underlying subset tree is a path [138].

Treewidth

Instance: A graph G = (V,E); a positive integer k.

Question: Is the treewidth of G no more than k?

Parameter: k

FPT (Bodlaender’s Theorem [25], yielding an O(f(k) · n) algo-
rithm)

Triangle Edge Deletion

Instance: A graph G = (V,E); a positive integer k.

Question: Is there an edge set C ⊆ E with |C| ≤ k whose removal produces
a graph without triangles as vertex-induced subgraphs?

Parameter: k

FPT ([133]; best current algorithm is obtained by reducing to
Hitting Set For Size d Sets with d = 3 and has time com-
plexity in O

(
2.1788k + |E|3

)
[118])

Triangle Vertex Deletion

Instance: A graph G = (V,E); a positive integer k.
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Question: Is there an vertex set C ⊆ V with |C| ≤ k whose removal produces
a graph without triangles as vertex-induced subgraphs?

Parameter: k

FPT ([133]; best current algorithm is obtained by reducing to
Hitting Set For Size d Sets with d = 3 and has time com-
plexity in O

(
2.1788k + |V |3

)
[118])

Triangle Packing

Instance: A graph G = (V,E); a positive integer k.

Question: Are there at least k vertex disjoint instances of K3 in G?

Parameter: k

FPT (reduction to problem kernel of size O
(
k3

)
[106])

Note: See also 3-Path Packing, s-Star Packing, and Graph Packing.

Triangulating Colored Graphs

Instance: A graph G = (V,E); a vertex coloring c : V → {1, . . . , k}.

Question: Does there exist a supergraph G′ = (V ′, E′) where E ⊆ E′, G′ is
properly colored by c, and G′ is triangulated?

Parameter: k

W[t]-hard for all t (reduction from Longest Common
Subsequence parameterized by k [33])

Two-Layer Planarization

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a set C ⊆ E, |C| ≤ k, whose removal makes the graph
biplanar?

Parameter: k

FPT (O
(
k2 · 5.1926k + |G|

)
algorithm in [92, 118])

Note: A bipartite graph G = (V1, V2, E) is biplanar if the vertices can be
placed on two parallel lines L1 and L2 in the plane (where the vertices from
Vi are placed on Li) such that there are no edge crossings when edges are
drawn as straight-line segments. A graph G = (V,E) is biplanar if there is
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a bipartition V = V1 ∪ V2 of its edge set (i.e., E(G[V1]) = E(G[V2]) = ∅)
such that (V1, V2, E) is biplanar. See also One-Layer Planarization and
t-Layer Planarization.

Two-Tree Crossing Minimization

Instance: A two-tree (T1, T2) with leaf labels Λ; a positive integer k.

Question: Can (T1, T2) be drawn on the plane in such a way that the corre-
sponding leaves are aligned in two adjacent layers with at most k crossings?

Parameter: k

FPT (O∗(ck
)

algorithm where c is a huge constant [118])

Note: A two-tree is a pair of rooted binary trees with perfect matching be-
tween corresponding leaves of the two trees, where the correspondence is
given by an appropriate labeling such that only leaves with the same label
are matched. If the drawing must respect a fixed ordering of the vertices in
one of the trees, the problem can be solved in time O

(
n log2 n

)
, where n is

the number of leaves [118].

Uniform Emulation For A Directed Graph

Instance: A directed acyclic graph G = (V,E); a positive integer k.

Question: Does there exist a function f : V → {1, . . . , |V | /k} such that
(u, v) ∈ E implies f(u)−f(v) ∈ {0, 1} and for all i = 1, . . . , |V | /k,

∣∣f−1(i)
∣∣ ≤

k?

Parameter: k

W[t]-hard for all t (reduction from Weighted Monotone t-
Normalized Satisfiability [33, 32])

Uniform Emulation On A Path

Instance: A graph G = (V,E); a positive integer k.

Question: Does there exist a function f : V → {1, . . . , |V | /k} such that
(u, v) ∈ E implies |f(u)− f(v)| ≤ 1 and for all i = 1, . . . , |V | /k,

∣∣f−1(i)
∣∣ ≤

k?

Parameter: k
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W[t]-hard for all t (reduction from Weighted Monotone t-
Normalized Satisfiability [33]; remains W[t]-hard for all t
when the given graph is a tree [33])

Uniform Register Allocation

Instance: A structured program P ; a positive integer k.

Question: Can P be compiled in such a way that all dynamically allocated
variables are assigned to at most k general-purpose hardware registers with-
out spilling?

Parameter: k

FPT (solvable in time O(f(k) · |P |) [22])

Note: A structured program is a program encoded in a high-level language
without gotos. Spilling is the act of temporarily saving some variables on
the stack in order to free the corresponding hardware registers. Compilers
may reorder the program statements, as long as the data dependencies are
not violated. See also Non-Uniform Register Allocation.

Unique Hitting Set

Instance: A set X; k subsets X1, . . . , Xk of X.

Question: Is there a set S ⊆ X such that for all i, 1 ≤ i ≤ k, |S ∩Xi| = 1?

Parameter: k

FPT (by the reduction to problem kernel method [81, Exer-
cise 3.2.5])

Unique Weighted CNF Satisfiability

Instance: A boolean formula X in conjunctive normal form; a positive inte-
ger k.

Question: Is there a unique weight k satisfying assignment for X?

Parameter: k

W[1]-hard, in W[2] (membership: direct proof ? [78]; hardness:
reduction from Perfect Code [78])

Note: This problem belongs to Dp[2] = W[2]∩co-W[2] [77][81, Appendix A].
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Unit Cycle Avoidance

Instance: A graph G; an abelian group of the form A = (Z2)m.

Question: Can the edges of G be labeled by elements of A so that no cycle
in G has label sum equal to the identity element of A?

Parameter: A

nonuniform FPT (application of the Robertson-Seymour Theo-
rem [193])

Note: Also in nonuniform FPT for an arbitrary abelian group A provided
that G has maximum degree 3.

Unitary Quantified Boolean t-Normalized Formula Satisfiabil-
ity

Instance: An integer r; a sequence s1, . . . , sr of pairwise disjoint sets of
boolean variables; a boolean formula X involving the variables s1 ∪ . . . sr

that consists of t alternating layers of conjunctions and disjunctions with
negations applied only to variables (t is a fixed constant).

Question: Is it the case that there exists a variable t1 of s1 such that for every
variable t2 of s2, there exists a variable t3 of s3 such that . . . (alternating
qualifiers) such that, when the variables t1 ∪ . . . tr are made true and all
other variables are made false, formula X is true?

Parameter: r

AW[∗]-complete (equivalent to Quantified Boolean t-
Normalized Formula Satisfiability [1, 2, 81])

Vapnik-Chervonenkis Dimension

Instance: A family of subsets F of a base set X; a positive integer k.

Question: Is the Vapnik-Chervonenkis dimension of F at least k? The
Vapnik-Chervonenkis dimension of a family of subsets F of a base set X is
the maximum cardinality of a set S ⊆ X such that for each subset S′ ⊆ S,
there exists Y ∈ F such that S ∩ Y = S′.

Parameter: k

W[1]-complete (membership: direct proof [79]; hardness: reduc-
tion from Clique [74])

Note: The general version of this problem is LOGNP-complete.
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Vertex Average Min Linear Arrangement

Instance: A connected graph G = (V,E); a positive integer k.

Question: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such that∑
(u,v)∈E |σ(u)− σ(v)| ≤ k · |V |?

Parameter: k

para-NP-complete (the problem was introduced by Serna and
Thilikos [198]; it is NP-complete for any k ≥ 2 and is also
para-NP-complete [140])

Note: The complexity class para-NP includes all parameterized problems
with instances (I, k) that can be solved in time O(f(k) |I|c) by nondeter-
ministic Turing machines [122, 124]. See also Linear Arrangement and
Edge Average Min Linear Arrangement.

Vertex Average Profile

Instance: A connected graph G = (V,E); a positive integer k.

Question: Is there a one-to-one mapping σ : V → {1, . . . , |V |} (a linear
arrangement) such that its profile is ≤ k · |V |?

Parameter: k

para-NP-complete (the problem was introduced by Serna and
Thilikos [198]; it is NP-complete for any k ≥ 2 and is also
para-NP-complete [140])

Note: The profile of a linear arrangement is∑
v∈V

(σ(v)−min {σ(w) : w ∈ N [v]}).

The complexity class para-NP includes all parameterized problems with in-
stances (I, k) that can be solved in time O(f(k) |I|c) by nondeterministic
Turing machines [122, 124]. See also Linear Arrangement and Vertex
Average Min Linear Arrangement.

Vertex Cover

Instance: A graph G = (V,E); a positive integer k.

Question: Does G have a vertex cover of size at most k? A vertex cover is
a subset V ′ ⊆ V such that ∀ (v, w) ∈ E, v ∈ V ′ or w ∈ V ′.
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Parameter: k

FPT (from a O
(
k |V (G)|+ 2kk2k+2

)
algorithm [41]; there is

an impressive list of improvements on the klam value for this
problem, see for example [75, 79, 179, 17, 87, 170, 202, 61,
171, 201, 62]; best current algorithms have time complexity in
O

(
rk + |V (G)|

)
for r ≈ 1.27, with trade-offs between small dif-

ferences in r and leading constants, and many are also paralleliz-
able [57]; it does not have a O∗

(
2oeff(k)

)
algorithm unless M[1] =

FPT, that is, unless q-CNF ∈ DTIME
(

2oeff(n) · poly(m)
)

for all
q ≥ 1, where n is the number of variables and m is the size of
the CNF formula [49, 73])

Parameter: the number of vertices of degree ≥ 3

FPT (by an exhaustive search tree O
(
2` |G|

)
algorithm that tries

all possibilities for the ` vertices of degree ≥ 3 [137])

Parameter: treewidth of G

FPT (O
(
2tw(G) |V |

)
dynamic programming algorithm in [118])

Note: See also Planar Vertex Cover, Integer Weighted Vertex
Cover, Real Weighted Vertex Cover, Log Vertex Cover, and
Miniaturized Vertex Cover.

t-Vertex Cover

Instance: A graph G = (V,E); positive integers k and t.

Question: Is there a t-vertex cover C ⊆ V with |C| ≤ k? A t-vertex cover is a
subset of vertices such that |{e ∈ E : e is adjacent to some vertex in C}| =
|E| − |E(G[V \ C])| ≥ t.

Parameter: k, t

Open (reported in [118])

Vertex Induced Forest

Instance: A graph G = (V,E); a positive integer k.

Question: Is there a subset F ⊆ V , |F | ≥ k, such that G[F ] is a forest, i.e.,
G[F ] does not contain any cycle?

Parameter: k
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W[1]-complete ([156, 118]; in FPT by a O∗(4.7316k
)

algorithm
when restricted to planar graphs [127, 118])

Note: This problem is the parameterized dual of Feedback Vertex Set
when taking the number of vertices as size function.

Weight Distribution

Instance: A binary m× n matrix H; a positive integer k.

Question: Is there a set of at most k columns of H that sum to the all-zero
vector?

Parameter: k

W[1]-hard, in W[2] ([89])

Note: See also Maximum Likelihood Decoding.

Weighted Antimonotone q-CNF Satisfiability

Instance: A boolean expression X in conjunctive normal form where each
clause includes exactly q negated variables (q ≥ 2), and no other negation
is used; a positive integer k.

Question: Does X have a satisfying truth assignment of weight k?

Parameter: k

W[1]-complete (membership is trivial; hardness: direct proof [78,
81])

Weighted Antimonotone t-Normalized Satisfiability

Instance: A t-normalized boolean expression X (t ≥ 3, t odd) where all
variables are negated, and no other negation is used; a positive integer k.

Question: Does X have a satisfying truth assignment of weight k?

Parameter: k

W[t]-complete (direct proofs [75, 77])

Note: A boolean expression is t-normalized if it is of the form product-of-
sums-of-products . . . of literals with t alternations.
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Weighted Antimonotone Formula Satisfiability

Instance: A boolean antimonotone formula X (all variables are negated, and
no other negation is used); a positive integer k.

Question: Does X have a satisfying assignment of Hamming weight k?

Parameter: k

W[SAT]-complete (membership is trivial; hardness: reduction
from Weighted Formula Satisfiability [1, 2])

Weighted Binary Integer Programming

Instance: A binary matrix A; a binary vector b; an integer k.

Question: Does A · x ≥ b have a binary solution of weight k?

Parameter: k

W[2]-complete (hardness: reduction from Weighted Mono-
tone t-Normalized Satisfiability with t = 2 [77])

Note: See also Weighted Exact Binary Integer Programming.

Weighted Circuit Satisfiability

Instance: A boolean circuit C; a positive integer k.

Question: Does C have a satisfying assignment of Hamming weight k?

Parameter: k

W[P]-complete (kernel problem of the class W[P] [1, 2])

Weighted q-CNF Satisfiability

Instance: A boolean expression X in conjunctive normal form (CNF) such
that each clause has no more than q literals; a positive integer k.

Question: Does X have a satisfying truth assignment of weight k?

Parameter: k

W[1]-complete (membership is trivial; hardness by a reduction
from Independent Set [78, 81])
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Weighted CNF Satisfiability

Instance: A boolean expression X in conjunctive normal form (CNF), a
positive integer k.

Question: Does X have a satisfying truth assignment of weight k?

Parameter: k

W[2]-complete (membership is trival; hardness by direct proof
[75, 77, 81])

Note: See also the Weighted t-Normalized Satisfiability problem.

Weighted Edge Dominating Set

Instance: A graph G = (V,E); a weight function ω : E → R≥1; a positive
integer k.

Question: Is there a subset D ⊆ E with
∑

e∈D ω(e) ≤ k such that for each
e ∈ E, either e ∈ D or there exists e′ ∈ D that is incident on e?

Parameter: k

FPT (O∗(4k
)

algorithm in [118])

Note: This is a generalization of Edge Dominating Set.

Weighted Exact Binary Integer Programming

Instance: A binary matrix A; a binary vector b; an integer k.

Question: Does A · x = b have a binary solution of weight k?

Parameter: k

W[1]-hard ([77])

Note: See also Weighted Binary Integer Programming.

Weighted Exact CNF Satisfiability

Instance: A boolean expression E in conjunctive normal form; a positive
integer k.

Question: Is there a truth-assignment of weight k to the variables of E that
makes exactly one literal in each clause of E true?

Parameter: k
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W[1]-complete (equivalent to Perfect Code [78])

Note: See also Unique Weighted CNF Satisfiability.

Weighted Formula Satisfiability

Instance: A boolean formula X; a positive integer k.

Question: Does X have a satisfying assignment of Hamming weight k?

Parameter: k

W[SAT]-complete (kernel problem of the class W[SAT] [1, 2])

Note: This problem is also known as Weighted Satisfiability.

Weighted Monotone Formula Satisfiability

Instance: A boolean monotone formula X; a positive integer k.

Question: Does X have a satisfying assignment of Hamming weight k?

Parameter: k

W[SAT]-complete (membership is trivial; hardness: reduction
from Weighted Formula Satisfiability [1, 2])

Weighted Monotone Circuit Satisfiability

Instance: A boolean monotone circuit C; a positive integer k.

Question: Does C have a satisfying assignment of Hamming weight k?

Parameter: k

W[P]-complete (membership is trivial; hardness: reduction from
Minimum Axiom Set [1, 2])

Weighted Monotone t-Normalized Satisfiability

Instance: A t-normalized boolean expression X (t ≥ 2, t even) without
negations; a positive integer k.

Question: Does X have a satisfying truth assignment of weight k?

Parameter: k

W[t]-complete (direct proofs [75, 77])
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Note: A boolean expression is t-normalized if it is of the form product-of-
sums-of-products . . . of literals with t alternations. Since a 2-normalized
boolean expression is in conjunctive normal form, for t = 2 the problem
coincides with Weighted CNF Satisfiability.

Weighted t-Normalized Satisfiability

Instance: A t-normalized boolean expression X (t ≥ 2); a positive integer k.

Question: Does X have a satisfying truth assignment of weight k?

Parameter: k

W[t]-complete (direct proofs [75, 77, 81])

Note: A boolean expression is t-normalized if it is of the form product-of-
sums-of-products . . . of literals with t alternations. Since a 2-normalized
boolean expression is in conjunctive normal form, for t = 2 the problem
coincides with Weighted CNF Satisfiability.

Weighted t-Normalized W[*] Satisfiability

Instance: A boolean expression X that is an n-product of k-sums of n-
products of k-sums . . . (repeated so that the number of product terms is t,
t ≥ 2).

Question: Does X have a satisfying truth assignment of weight k?

Parameter: k

W[t]-complete (direct proofs [76]; the argument for completeness
proceeds from first principles and follows the same style as the
basic proofs for W[t]-completeness of Weighted t-Normalized
Satisfiability)

Weighted Planar Circuit Satisfiability

Instance: A planar decision circuit C; a positive integer k.

Question: Does C have a satisfying assignment of Hamming weight k?

Parameter: k

W[P]-complete (membership is trivial; hardness: reduction from
Weighted Circuit Satisfiability [2])
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